Егэ по физике молекулярная физика с решением. Модели строения твердых тел, жидкостей и газов. Взаимные превращения жидкостей и газов Кипение

Продолжаем разбирать задания из первой части ЕГЭ по физике, посвящённые теме «Молекулярная физика и термодинамика». Как обычно все решения снабжены подробными комментариями от репетитора по физике. Также присутствует видеоразбор всех предложенных заданий. В конце статьи можно найти ссылки на разборы других заданий из ЕГЭ по физике.


Под термодинамическим равновесием понимается состояние системы, при котором её макроскопические параметры не изменяются с течением времени. Такое состояние будет достигнуто, когда температуры азота и кислорода в сосуде выровняются. Все остальные параметры будут зависеть от массы каждого из газов и в общем случае не будут одинаковы, даже при наступлении термодинамического равновесия. Правильный ответ: 1.

При изобарном процессе объём V и температура T

Итак, зависимость V от T должна быть прямо пропорциональной, при этом, если температура уменьшается, то и объём должен уменьшаться. Подходит график 4.

КПД теплового двигателя определяется по формуле:

Здесь A — совершенная за цикл работа, Q 1 — количество теплоты, полученное рабочим телом за цикл от нагревателя. Расчёты дают следующий результат: кДж.

11. При исследовании изопроцессов использовался закрытый сосуд переменного объёма, заполненный воздухом и соединённый с манометром. Объём сосуда медленно увеличивают, сохраняя давление воздуха в нём постоянным. Как изменяются при этом температура воздуха в сосуде и его плотность? Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Процесс изобарный. При изобарном процессе объём V и температура T идеального газа связаны соотношением:

Итак, зависимость V от T прямо пропорциональная, то есть при увеличении объёма, увеличивается и температура.

Плотность вещества связана с массой m и объёмом V соотношением:

Итак, при постоянной массе m зависимость ρ от V обратно пропорциональная, то есть, если объём увеличивается, то плотность уменьшается.

Правильный ответ: 12.

12. На рисунке изображена диаграмма четырёх последовательных изменений состояния 2 моль идеального газа. В каком процессе работа газа имеет положительное значение и минимальна по величине, а в каком работа внешних сил положительна и минимальна по величине? Установите соответствие между этими процессами и номерами процессов на диаграмме.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Работа газа численно равна площади под графиком газового процесса в координатах . По знаку она положительна в процессе, происходящем с увеличением объёма, и отрицательна в обратном случае. Работа внешних сил, в свою очередь, равна по модулю и противоположна по знаку работе газа в этом же процессе.

То есть работа газа положительна в процессах 1 и 2. При этом в процессе 2 она меньше, чем в процесс 1, так как площадь желтой трапеции на рисунке меньше площади коричневой трапеции:

Напротив, работа газа отрицательная в процессах 3 и 4, а значит в этих процессах работа внешних сил положительна. При этом в процессе 4 она меньше, чем в процессе 3, поскольку площадь синей трапеции на рисунке меньше площади красной трапеции:

Итак, правильный ответ: 42.

Это было последнее задание по теме «Молекулярная физика и термодинамика» из первой части ЕГЭ по физике. Разбор заданий по механике ищите .

Материал подготовлен , Сергеем Валерьевичем

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

ЕГЭ 2018. Физика. Я сдам ЕГЭ! Механика. Молекулярная физика. Типовые задания. Демидова М.Ю., Грибов В.А., Гиголо А.И.

М.: 2018 - 204 с.

Модульный курс «Я сдам ЕГЭ! Физика» создан авторским коллективом из числа членов Федеральной комиссии по разработке контрольных измерительных материалов ЕГЭ по физике. Он включает пособия «Курс самоподготовки» и «Типовые задания». Курс предназначен для подготовки обучающихся 10-11 классов к государственной итоговой аттестации. Последовательность уроков предъявлена в логике экзаменационной работы по физике на основе модульного принципа. Каждое занятие нацелено на конкретный результат и содержит отработку основных теоретических сведений и практических навыков для выполнения конкретного задания экзаменационной работы. В пособии представлены тематические модули, составленные в соответствии с логикой экзаменационной работы. Курс адресован педагогам, школьникам и их родителям для проверки/самопроверки достижения требований образовательного стандарта к уровню подготовки выпускников.


Формат: pdf

Размер: 45 Мб

Смотреть, скачать: drive.google


СОДЕРЖАНИЕ
Предисловие 3
Уроки 1-25. Механика

Уроки 1-5. Кинематика
Справочные материалы 8
Задания для самостоятельной работы 12
Проверочная работа по теме «Кинематика» 29
Уроки 6-10. Динамика
Справочные материалы 33
Задания для самостоятельной работы 36
Проверочная работа по теме «Динамика» 58
Уроки 11-15. Законы сохранения в механике
Справочные материалы 62
Задания для самостоятельной работы 64
Проверочная работа по теме «Законы сохранения в механике» 88
Уроки 16-20. Статика
Справочные материалы 91
Задания для самостоятельной работы 93
Проверочная работа по теме «Статика» 102
Уроки 21-25. Механические колебания и волны
Справочные материалы 104
Задания для самостоятельной работы 106
Проверочная работа по теме «Механические колебания и волны» 128
Уроки 26-35. Молекулярная физика
Уроки 26-30. Молекулярно-кинетическая теория
Справочные материалы 132
Задания для самостоятельной работы 137
Проверочная работа по теме «Молекулярно-кинетическая теория» 158
Уроки 31-35. Термодинамика
Справочные материалы 163
Задания для самостоятельной работы 166
Проверочная работа по теме «Термодинамика» 187
Ответы к заданиям для самостоятельной работы 192

Справочные материалы содержат основные теоретические сведения по теме. В них включены все элементы содержания кодификатора ЕГЭ по физике, но каждая позиция кодификатора представлена более подробно: приведены определения всех понятий, формулировки законов и т. д. Перед началом работы над тематическим блоком необходимо изучить эти справочные материалы, понимать все перечисленные в них элементы содержания по данной теме. Если что-то осталось непонятным, то необходимо вернуться к соответствующему параграфу учебника, ещё раз изучив необходимый теоретический материал.
К справочным материалам можно обращаться при выполнении заданий для самостоятельной работы, а при выполнении проверочной работы по теме постарайтесь к справочным материалам уже не обращаться. К этому моменту все необходимые формулы уже необходимо запомнить и уверенно применять при решении задач.
Задания для самостоятельной работы включают подборки заданий для тех линий КИМ ЕГЭ, в которых проверяются элементы содержания из данной темы. Сначала представлена наиболее подробная подборка заданий для линий базового уровня. Здесь выделены подборки для каждого содержательного элемента, а внутри такой подборки приведено не менее двух заданий для каждой из моделей заданий экзаменационной работы.

Уроки 1-5. Кинематика
СПРАВОЧНЫЕ МАТЕРИАЛЫ
1.1.1. Механическое движение - изменение положения тела в пространстве относительно других тел (или изменение формы тела) с течением времени.
Механическое движение вследствие этого определения относительно: то, как движется тело, зависит от того, относительно какого предмета рассматривается это движение. Пример: чемодан неподвижно лежит на полке вагона, но вместе с поездом движется относительно Земли.
Система отсчёта служит для количественного описания механического движения. Поэтому вследствие определения механического движения систему отсчёта образуют:
1) тело отсчёта (не меняющее своей формы);
2) система координат, жёстко связанная с телом отсчёта;
3) часы (прибор для измерения времени), жёстко связанные с телом отсчёта.
1.1.2. Материальная точка - простейшая модель реального тела, представляющая собой геометрическую точку, с которой связаны масса тела, его заряд и т. д. Эта модель применима, если размерами тела в данной задаче можно пренебречь. Два самых частых примера таких задач:
- пройденное телом расстояние много больше размеров самого тела (автомобиль проехал 100 км со скоростью 50 км/ч. Найти время движения);
- случай поступательного движения твёрдого тела (см. ниже). В этом случае все точки тела движутся одинаково, поэтому достаточно исследовать движение одной точки тела.

Цель: повторение основных понятий, законов и формул молекулярной физики в соответствии с кодификатором ЕГЭ

Элементы содержания, проверяемые на ЕГЭ 2012:
1.Основные положения МКТ.
2.Модели строения газов, жидкостей и твердых тел.
3.Модель идеального газа.
4.Основное уравнение МКТ идеального газа.
5.Абсолютная температура как мера средней кинетической энергии его
частиц.
6.Уравнение Менделеева-Клапейрона.
7.Изопроцессы.
8.Взаимные превращения жидкостей и газов.
9.Насыщенные и ненасыщенные пары. Влажность воздуха.
10.Изменение агрегатных состояний вещества. Плавление и
отвердевание.
11.Термодинамика: внутренняя энергия, количество теплоты, работа.
12.Первый закон термодинамики
13.Второй закон термодинамики.
14.Применение первого закона термодинамики к изопроцессам.
15.КПД тепловых двигателей.

Основные положения МКТ

Молекулярно-кинетической теорией называют
учение о строении и свойствах вещества на основе
представления о существовании атомов и молекул как
наименьших частиц химического вещества.
Основные положения МКТ:
1. Все вещества – жидкие, твердые и газообразные –
образованы из мельчайших частиц – молекул,
которые сами состоят из атомов.
2. Атомы и молекулы находятся в непрерывном
хаотическом движении.
3. Частицы взаимодействуют друг с другом силами,
имеющими электрическую природу (притягиваются и
отталкиваются).

Атом. Молекула.

Атом – это наименьшая
часть химического
элемента, обладающая
его свойствами,
способная к
самостоятельному
существованию.
Молекула –
мельчайшая устойчивая
частица вещества,
состоящая из атомов
одного или нескольких
химических элементов,
сохраняющая основные
химические свойства
этого вещества.

Масса молекул. Количество вещества.

Относительной молекулярной (или атомной)
массой вещества называют отношение
массы
m0
M r вещества к 1/12
молекулы (или атома) данного
1
массы атома углерода 12С.
m0C
Количество вещества – это 12
число молекул в
теле, но выраженное в относительных единицах.
Моль – это количество вещества, содержащее
столько же частиц (молекул), сколько атомов
содержится в 0,012 кг углерода 12C.
23
1
Значит
любого
вещества содержится
N A 6в 110моль
моль
одно и то же число частиц (молекул). Это число
называется постоянной Авогадро NА.
Количество вещества равноN отношению числа
молекул в данном теле к постоянной
Авогадро, т.е.
NA
к числу молекул в 1 моль вещества.
кг
3
m
MM
M
r 10
m0 N A
Молярной массой вещества называют
массу
моль
вещества, взятого в количестве 1 моль.

Молекулы большинства твердых тел
расположены в определенном порядке.
Такие твердые тела называют
кристаллическими.
Движения частиц представляют собой
колебания около положений равновесия.
Если соединить центры положений
равновесия частиц, то получится
правильная пространственная решетка,
называемая кристаллической.
Расстояния между молекулами сравнимо
с размерами молекул.
Основные свойства: сохраняют форму и
объем. Монокристаллы анизотропны.
Анизотропия – зависимость физических
свойств от направления в кристалле.
l r0

Модели строения твердых тел, жидкостей и газов

Расстояния между молекулами
жидкости сравнимо с размерами
молекул, поэтому жидкость мало
сжимается.
Молекула жидкости колеблется
около положения временного
равновесия, сталкиваясь с другими
молекулами из ближайшего
окружения. Время от времени ей
удается совершить «прыжок»,
чтобы продолжать совершать
колебания среди других соседей.
«Прыжки» молекул происходят по
всем направлениям с одинаковой
частотой, этим объясняется
текучесть жидкости и то, что она
принимает форму сосуда
l r0

Модели строения твердых тел, жидкостей и газов

Расстояние между молекулами газов
намного больше размеров самих
молекул, поэтому газ можно сжать так,
что его объем уменьшится в несколько
раз.
Молекулы с огромными скоростями
движутся в пространстве между
столкновениями. Во время
столкновений молекулы резко меняют
скорость и направление движения.
Молекулы очень слабо притягиваются
друг к другу, поэтому газы не имеют
собственной формы и постоянного
объема.
l r0

Тепловое движение молекул

Беспорядочное хаотическое движение
молекул называется тепловым
движением. Доказательством
теплового движения является
броуновское движение и диффузия.
Броуновское движение – это тепловое
движение мельчайших частиц,
взвешенных в жидкости или газе,
происходящее под действием ударов
молекул окружающей среды.
Диффузией называется явление
проникновения двух или нескольких
соприкасающихся веществ друг в
друга.
Скорость диффузии зависит от
агрегатного состояния вещества и
температуры тела.

10. Взаимодействие частиц вещества

Силы взаимодействия между молекулами.
На очень малых расстояниях между молекулами
обязательно действуют силы отталкивания.
На расстояниях, превышающих 2 - 3 диаметра
молекул, действуют силы притяжения.

11. Модель идеального газа

Идеальный газ – это теоретическая модель
газа, в которой пренебрегают размерами и
взаимодействиями частиц газа и учитывают
лишь их упругие столкновения.
В кинетической модели идеального газа
молекулы рассматриваются как идеально
упругие шарики, взаимодействующие между
собой и со стенками только во время упругих
столкновений.
Суммарный объем всех молекул предполагается
малым по сравнению с объемом сосуда, в
котором находится газ.
Сталкиваясь со стенкой сосуда, молекулы газа
оказывают на нее давление.
Микроскопические параметры: масса,
скорость, кинетическая энергия молекул.
Макроскопические параметры: давление,
объем, температура.

12. Основное уравнение МКТ газов

Давление идеального газа равно двум третям
средней кинетической энергии поступательного
движения молекул, содержащихся в единице объема
где n = N / V – концентрация молекул (т. е. число
молекул в единице объема сосуда)
Закон Дальтона: давление в смеси химически
невзаимодействующих газов равно сумме их
парциальных давлений
p = p1 + p2 + p3

13. Абсолютная температура

Температура характеризует степень нагретости тела.
Тепловое равновесие – это такое состояние системы
тел, находящихся в тепловом контакте, при котором не
происходит теплопередачи от одного тела к другому, и
все макроскопические параметры тел остаются
неизменными.
Температура – это физический параметр, одинаковый
для всех тел, находящихся в тепловом равновесии.
Для измерения температуры используются физические
приборы – термометры.
Существует минимально возможная температура, при
которой прекращается хаотическое движение молекул.
Она называется абсолютным нулем температуры.
Температурная шкала Кельвина называется абсолютной
шкалой температур.
T t 273

14. Абсолютная температура

Средняя кинетическая энергия хаотического движения
молекул газа прямо пропорциональна абсолютной
температуре.
3
E kT
2
2
p nE p nkT
3
k – постоянная Больцмана – связывает температуру в
энергетических единицах с температурой в кельвинах
Температура есть мера средней кинетической энергии
поступательного движения молекул.
При одинаковых давлениях и температурах концентрация
молекул у всех газов одинакова
Закон Авогадро: в равных объемах газов при одинаковых
температурах и давлениях содержится одинаковое число
молекул

15. Уравнение Менделеева-Клапейрона

Уравнение состояния идеального газа – это зависимость между
параметрами идеального газа – давлением, объемом и
абсолютной температурой, определяющими его состояние.
pV RT
m
RT
M
R kN A 8,31
Дж
моль К
R - универсальная газовая постоянная.
Закон Авогадро: один моль любого газа при нормальных условиях
занимает один и тот же объем V0, равный 0,0224 м3/моль.
Из уравнения состояния вытекает связь между давлением,
объемом и температурой идеального газа, который может
находиться в двух любых состояниях.
Уравнение Клапейрона
pV
pV
1 1
T1
2 2
T2
const .

16. Изопроцессы

Изопроцессы – это процессы, в которых
один из параметров (p, V или T) остается
неизменным.
Изотермический процесс (T = const) –
процесс изменения состояния
термодинамической системы, протекающий
при постоянной температуре T.
Закон Бойля–Мариотта: для газа данной
массы произведение давления газа на его
объем постоянно, если температура газа не
меняется.
const
pV const p
V
T3 > T2 > T1

17. Изопроцессы

Изохорный процесс – это процесс изменения

постоянном объеме.
Закон Шарля: для газа данной массы
отношение давления к температуре постоянно,
если объем не меняется.
p
const p const T
T
V3 > V2 > V1

18. Изопроцессы

Изобарный процесс – это процесс изменения
состояния термодинамической системы при
постоянном давлении.
Закон Гей-Люссака: для газа данной массы
отношение объема к температуре постоянно, если
давление газа не меняется.
V
V V0 1 t
const V const T
T
При постоянном давлении объем идеального газа
меняется линейно с температурой.
где V0 – объем газа при температуре 0 °С.
α = 1/273,15 К–1 - температурный коэффициент объемного
расширения газов.
p3 > p2 > p1

19. Взаимные превращения жидкостей и газов

Парообразование – это переход вещества из
жидкого состояния в газообразное.
Конденсация – переход вещества из
газообразного состояния в жидкое.
Испарение – это парообразование,
происходящее со свободной поверхности
жидкости.
С точки зрения молекулярно-кинетической
теории, испарение – это процесс, при котором с
поверхности жидкости вылетают наиболее
быстрые молекулы, кинетическая энергия
которых превышает энергию их связи с
остальными молекулами жидкости. Это приводит
к уменьшению средней кинетической энергии
оставшихся молекул, т. е. к охлаждению
жидкости.
При конденсации происходит выделение
некоторого количества теплоты в окружающую
среду.

20. Взаимные превращения жидкостей и газов Насыщенные и ненасыщенные пары

В закрытом сосуде жидкость и ее
пар могут находиться в состоянии
динамического равновесия, когда
число молекул, вылетающих из
жидкости, равно числу молекул,
возвращающихся в жидкость из
пара, т. е. когда скорости процессов
испарения и конденсации
одинаковы.
Пар, находящийся в равновесии со
своей жидкостью, называют
насыщенным.
Давление насыщенного пара p0
данного вещества зависит только от
его температуры и не зависит от
объема
Давление насыщенного пара растет
не только в результате повышения
температуры жидкости, но и
вследствие увеличения
концентрации молекул пара.
p0 nkT

21. Взаимные превращения жидкостей и газов Кипение

Кипение – это парообразование,
происходящее по всему объему жидкости.
Кипение жидкости начинается при
такой температуре, при которой
давление ее насыщенных паров
становится равным давлению в
жидкости, которое складывается из
давления воздуха на поверхность
жидкости (внешнее давление) и
гидростатического давления столба
жидкости.
У каждой жидкости своя температура
кипения, которая зависит от давления
насыщенного пара. Чем ниже давление
насыщенного пара, тем выше
температура кипения соответствующей
жидкости

22. Влажность воздуха

Влажность воздуха – это содержание в воздухе водяного
пара.
Чем больше водяных паров находится в определенном объеме
воздуха, тем ближе пар к состоянию насыщения. Чем выше
температура воздуха, тем большее количество водяных паров
требуется для его насыщения.
Абсолютная влажность – это плотность водяного пара,
выраженная в кг/м3 или его парциальное давление - давление
водяного пара, которое он производил бы, если бы все другие
газы отсутствовали.
Относительная влажность воздуха – это отношение
абсолютной влажности воздуха к плотности насыщенного пара
при той же температуре или это отношение парциального
давления пара в воздухе к давлению насыщенного пара при той
же температуре.
p
100%;
100%
0
p0
Для определения влажности воздуха используют гигрометры:
конденсационный и волосной; и психрометр.

23. Изменение агрегатных состояний вещества: плавление и кристаллизация

Плавление - переход вещества из
твёрдого состояния в жидкое.
Отвердевание или кристаллизация переход вещества из жидкого состояния в
твердое.
Температура при которой вещество
начинает плавиться называется
температурой плавления.
Во время плавления вещества его
температура не изменяется, т.к. энергия,
получаемая веществом, тратится на
разрушение кристаллической решетки. При
отвердевании образуется кристаллическая
решетка, при этом энергия выделяется и
температура вещества не изменяется.
У аморфных тел нет определенной
температуры плавления.

24. Термодинамика

Термодинамика – это теория тепловых процессов,
в которой не учитывается молекулярное строение
тел.
Основные понятия термодинамики:
Макроскопическая система – система, состоящая
из большого числа частиц.
Замкнутая система – система, изолированная от
любых внешних воздействий.
Равновесное состояние – это состояние
макроскопической системы, при котором
параметры, характеризующие ее состояние,
остаются неизменными во всех частях системы.
Процессом в термодинамике называется
изменение состояния тела со временем.

25. Внутренняя энергия

Внутренняя энергия тела – это сумма
кинетической энергии всех его молекул и
потенциальной энергии их взаимодействия.
Внутренняя энергия идеального газа
определяется только кинетической энергией
беспорядочного поступательного движения его
молекул.
3 m
3
U
RT
U pV
2M
2
Внутренняя энергия идеального одноатомного
газа прямо пропорциональна его температуре.
Внутреннюю энергию можно изменить двумя
способами: совершением работы и
теплопередачей.

26. Теплопередача

Теплопередача – это
самопроизвольный процесс передачи
теплоты, происходящий между телами
с разной температурой.
Виды теплопередачи
Теплопроводность
Конвекция
Излучение

27. Количество теплоты

Количеством теплоты называют
количественную меру изменения
внутренней энергии тела при
теплообмене (теплопередаче).

нагревания тела или выделяемого им
при охлаждении:
с – удельная теплоемкость –
физическая величина, показывающая,
какое количество теплоты требуется
для нагревания 1 кг вещества на 1 0С.
Количество теплоты, выделяемое при
полном сгорании топлива.
q – удельная теплота сгорания –

количество теплоты выделяется при
полном сгорании топлива массой 1 кг.
Q cm t2 t1
Q qm

28. Количество теплоты

Количество теплоты, необходимое для
плавления кристаллического тела или
выделяемое телом при отвердевании.
λ – удельная теплота плавления –
величина, показывающая, какое
количество теплоты необходимо
сообщить кристаллическому телу
массой 1 кг, чтобы при температуре
плавления полностью перевести его в
жидкое состояние.
Количество теплоты, необходимое для
полного превращения жидкого
вещества в пар или выделяемое телом
при конденсации.
r или L – удельная теплота
парообразования – величина,
показывающая, какое количество
теплоты необходимо, чтобы обратить
жидкость массой 1 кг в пар без
изменения температуры.
Q m
Q rm; Q Lm

29. Работа в термодинамике

В термодинамике, в отличие от механики,
рассматривается не движение тела как целого,
а лишь перемещение частей
макроскопического тела относительно друг
друга. В результате меняется объем тела, а
его скорость остается равной нулю.
При расширении газ совершает
положительную работу А" = pΔV. Работа А,
совершаемая внешними телами над газом
отличается от работы газа А" только знаком: А
= - А".
На графике зависимости давления от объема
работа определяется как площадь фигуры под
графиком.

30. Первый закон термодинамики

Первый закон термодинамики – это закон сохранения и
превращения энергии для термодинамической системы.
Изменение внутренней энергии системы при переходе ее
из одного состояния в другое равно сумме работы
внешних сил и количества теплоты, переданного системе.
U A Q
Если работу совершает система, а не внешние силы:
Q U A
Количество теплоты, переданное системе, идет на
изменение ее внутренней энергии и на совершение
системой работы над внешними телами.

31. Применение первого закона термодинамики к различным процессам

Изобарный процесс.
Количество теплоты, переданное системе,
Q U A
идет на изменение ее внутренней энергии и на
совершение системой работы над внешними
телами.
Изохорный процесс: V – const => A = 0
Изменение внутренней энергии равно
количеству переданной теплоты.
Изотермический процесс: Т – const => ΔU = 0
Все переданное газу количество теплоты идет
на совершение работы.
Адиабатный процесс: протекает в системе,
которая не обменивается теплотой с
окружающими телами, т.е. Q = 0
Изменение внутренней энергии происходит
только за счет совершения работы.
U Q
Q A
U A

32. Второй закон термодинамики

Все процессы самопроизвольно протекают в
одном определенном направлении. Они
необратимы. Теплота всегда переходит от
горячего тела к холодному, а механическая
энергия макроскопических тел – во внутреннюю.
Направление процессов в природе указывает
второй закон термодинамики.
Р. Клаузиус (1822 – 1888): невозможно
перевести теплоту от более холодной системы к
более горячей при отсутствии других
одновременных изменений в обеих системах или
в окружающих телах.

33. КПД тепловой машины

Тепловые двигатели – устройства,
превращающие внутреннюю энергию
топлива в механическую.
Рабочим телом у всех ТД является газ,
который получает при сгорании топлива
количество теплоты Q1, совершает
работу А" при расширении. Часть
теплоты Q2 неизбежно передается
холодильнику, т.е. теряется.
Коэффициентом полезного действия
теплового двигателя называют
отношение работы, совершаемой
двигателем, к количеству теплоты,
полученному от нагревателя:
Идеальная тепловая машина Карно с
идеальным газом в качестве рабочего
тела имеет максимально возможный
КПД:
A Q1 Q2
A Q1 Q2
Q1
Q1
max
T1 T2
T1

34.

35.

1. термометр не рассчитан на высокие температуры
и требует замены
2. термометр показывает более высокую
температуру
3. термометр показывает более низкую температуру
4. термометр показывает расчетную температуру

36.

1. 180С.
2. 190С
3. 210С.
4. 220С.

37.

Т,К
350
300
0
t(мин)
2
4
6
8
1. теплоемкость воды увеличивается со временем
2. через 5 минут вся вода испарилась
3. при температуре 350 К вода отдает воздуху столько тепла,
сколько получает от газа
4. через 5 минут вода начинает кипеть

38.

1. Вода переходит из
твердого состояния в
жидкое при 00С.
2. Вода кипит при 1000С.
3. Теплоемкость воды
равна 4200 Дж/(кг 0С).
4. Чем дольше нагревается
вода, тем выше ее
температура.

39.

1. В положении I теплопередача осуществляется от тела 1 к телу 2.
2. В положении II теплопередача осуществляется от тела 1 к телу 2.
3. В любом положении теплопередача осуществляется от тела 2
к телу 1.
4. Теплопередача осуществляется только в положении II.

40.

Р
Р
P
Р
50
50
50
50
(В)
40
40
(A)
(Б)
30
(Г)
40
30
30
20
20
20
10
10
10
0
0
0
0
2
4
6
8
2
4
6
8
10
00
10
2
4
6
8
10
10
1) График А
V
V
V
2) График Б
3) График В
V
4) График Г.

41.

1. только А
2. только Б
3. только В
4. А, Б и В

42.

E k
1
1. 1
2. 2
3. 3
4. 4
1
2
3
4
0
T

43.

44.

1. А
2. Б
3. В
4. Г
P, кПа
А
Б
2
В
1
0
Г
1
2
3
V,м

45.

1. равна средней кинетической энергии молекул
жидкости
2. превышает среднюю кинетическую энергию
молекул жидкости
3. меньше средней кинетической энергии молекул
жидкости
4. равна суммарной кинетической энергии молекул
жидкости

46.

1. Увеличилось в 4 раза
2. Уменьшилось в 2 раза
3. Увеличилось в 2 раза
4. Не изменилось
pV
const T
const p
T
V

47.

48.

1.
2.
3.
4.
200 К
400 К
600 К
1200 К
P, кПа
200
100
0
2
1
4
1
3
2
3
3 V, м
p4V4 p2V2
p2V2
200 3 200
T2
T4
1200 K
T4
T2
p4V4
100 1

49.

1.
2.
3.
4.
уменьшилось в 3 раза
увеличилось в 3 раза
увеличилось в 9 раз
не изменилось
2
p nE
3

50.

1.
2.
3.
4.
изобарное нагревание
изохорное охлаждение
изотермическое сжатие
изохорное нагревание

51.

1. мощности нагревателя
2. вещества сосуда, в котором нагревается вода
3. атмосферного давления
4. начальной температуры воды

3. при высокой, так как при этом пот

64.

1.
2.
3.
4.
только в жидком состоянии
только в твердом состоянии
и в жидком, и в твердом состояниях
и в жидком, и в газообразном состояниях

65.

ОСОБЕННОСТИ ИЗОПРОЦЕССА
НАЗВАНИЕ
ИЗОПРОЦЕССА
А) Все переданное газу количество теплоты идет на
совершение работы, а внутренняя энергия газа
остается неизменной.
1) изотермический
Б) Изменение внутренней энергии газа происходит
только за счет совершения работы, так как
теплообмен с окружающими телами отсутствует.
2) изобарный
3) изохорный
4) адиабатный
А
Б
1
4

66.

1
2
3

67.

1. После помещения банки на огонь вода в ней
нагревалась через тонкую стенку банки от горячих
продуктов горения газа. При этом с ростом температуры
вода испарялась, и возрастало давление ее паров в
банке, которые постепенно вытесняли из нее воздух.
Когда вода закипела и почти вся испарилась, воздуха
внутри банки практически не осталось. Давление
насыщенных паров в банке при этом стало равно
внешнему атмосферному давлению.
2. Когда банку сняли с огня, закрыли крышкой и охладили
холодной водой почти до комнатной температуры,
горячие пары воды внутри банки остыли и практически
целиком сконденсировались на ее стенках, отдавая
теплоту конденсации наружу, холодной воде, благодаря
процессу теплопроводности через стенки.

68.

1. В соответствии с уравнением Клапейрона–Менделеева
2.
давление пара в банке резко упало – во-первых, из-за
уменьшения массы оставшегося в банке пара, и, во-вторых –
из-за падения его температуры. Заметим, что резкое
уменьшение давления в банке можно объяснить и так: при
понижении температуры до комнатной пары конденсируются,
оставаясь насыщенными, но их давление становится намного
меньше давления насыщенных паров воды при температуре
кипения (примерно в 40 раз).
Поскольку при комнатной температуре давление насыщенных
паров воды составляет лишь малую долю от атмосферного
давления (не более 3–4%), тонкая банка после поливания ее
водой окажется под действием разности этого большого
внешнего давления и низкого давления пара внутри. По этой
причине на банку начнут действовать большие сдавливающие
силы, которые будут стремиться сплющить банку. Как только
эти силы превысят предельную величину, которую могут
выдержать стенки банки, то она сплющится и резко
уменьшится в объеме.

69.

Согласно первому началу
термодинамики количество теплоты,
необходимое для плавления льда, ΔQ1
= λm, где λ – удельная теплота
плавления льда. ΔQ2 –подведённое
джоулево тепло: ΔQ2 = ηPt. В
соответствии с заданными условиями
ΔQ1 = 66 кДж и ΔQ2 = 84 кДж, а значит,
ΔQ1 < ΔQ2, и поставленная задача
выполнима

70.

Согласно первому началу термодинамики, количество
теплоты Q, переданное газу, идет на изменение его
внутренней энергии ΔU и совершение этим газом работы
A, то есть Q = ΔU + A. При нагревании газа происходит
его изобарное расширение. В этом процессе работа газа
равна A = pΔV , где изменение объема газа ΔV = Sl = πR2l.
Из условия равновесия поршня (см. рисунок) найдем
давление газа:pS = p0S + Mgcosα, откуда
Mg cos
p p0
S
Тогда искомая величина равна
Mg cos
U Q R l p0
2
R
2

71.

1. Берков, А.В. и др. Самое полное издание типовых вариантов
реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для
выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО
"Издательство Астрель", 2009. – 160 с.
2. Касьянов, В.А. Физика, 11 класс [Текст]: учебник для
общеобразовательных школ / В.А. Касьянов. – ООО "Дрофа", 2004. –
116 с.
3. Мякишев, Г.Я. и др. Физика. 11 класс [Текст]: учебник для
общеобразовательных школ / учебник для общеобразовательных
школ Г.Я. Мякишев, Б.Б. Буховцев. –" Просвещение ", 2009. – 166 с.
4. Открытая физика [текст, рисунки]/ http://www.physics.ru
5. Подготовка к ЕГЭ /http://egephizika
6. Федеральный институт педагогических измерений. Контрольные
измерительные материалы (КИМ) Физика //[Электронный ресурс]//
http://fipi.ru/view/sections/92/docs/
7. Физика в школе. Физика - 10 класс. Молекулярная физика.
Молекулярно-кинетическая теория. Рисунки по физике/
http://gannalv.narod.ru/mkt/
8. Эта удивительная физика/ http://sfiz.ru/page.php?id=39

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В основе молекулярно-кинетической теории лежат три основных положения:

  • Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул , которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы (соответственно, анионы и катионы).
  • Атомы и молекулы находятся в непрерывном хаотическом движении и взаимодействии, скорость которого зависит от температуры, а характер – от агрегатного состояния вещества.
  • Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Атом – наименьшая химически неделимая частица элемента (атом железа, гелия, кислорода). Молекула – наименьшая частица вещества, сохраняющая его химические свойства. Молекула состоит из одного и более атомов (вода – Н 2 О – 1 атом кислорода и 2 атома водорода). Ион – атом или молекула, у которых один или несколько электронов лишние (или электронов не хватает).

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10 –10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах молекулы конденсируются в жидкое или твердое вещество. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10 –8 м, то есть в сотни раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.

Идеальный газ – это газ, молекулы которого не взаимодействуют друг с другом, за исключением процессов упругого столкновения и считаются материальными точками.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль). Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12 C. Молекула углерода состоит из одного атома. Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро: N А = 6,022·10 23 моль –1 .

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории. Количество вещества определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро N А, или как отношение массы к молярной массе:

Массу одного моля вещества принято называть молярной массой M . Молярная масса равна произведению массы m 0 одной молекулы данного вещества на постоянную Авогадро (то есть на количество частиц в одном моле). Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса. В таблице Менделеева молярная масса указана в граммах на моль. Таким образом имеем еще одну формулу:

где: M – молярная масса, N A – число Авогадро, m 0 – масса одной частицы вещества, N – число частиц вещества содержащихся в массе вещества m . Кроме этого понадобится понятие концентрации (количество частиц в единице объема):

Напомним также, что плотность, объем и масса тела связаны следующей формулой:

Если в задаче идет речь о смеси веществ, то говорят о средней молярной массе и средней плотности вещества. Как и при вычислении средней скорости неравномерного движения, эти величины определяются полными массами смеси:

Не забывайте, что полное количество вещества всегда равно сумме количеств веществ, входящих в смесь, а с объемом надо быть аккуратными. Объем смеси газов не равен сумме объемов газов, входящих в смесь. Так, в 1 кубометре воздуха содержится 1 кубометр кислорода, 1 кубометр азота, 1 кубометр углекислого газа и т.д. Для твердых тел и жидкостей (если иное не указано в условии) можно считать, что объем смеси равен сумме объемов ее частей.

Основное уравнение МКТ идеального газа

При своем движении молекулы газа непрерывно сталкиваются друг с другом. Из-за этого характеристики их движения меняются, поэтому, говоря об импульсах, скоростях, кинетических энергиях молекул, всегда имеют в виду средние значения этих величин.

Число столкновений молекул газа в нормальных условиях с другими молекулами измеряется миллионами раз в секунду. Если пренебречь размерами и взаимодействием молекул (как в модели идеального газа), то можно считать, что между последовательными столкновениями молекулы движутся равномерно и прямолинейно. Естественно, подлетая к стенке сосуда, в котором расположен газ, молекула испытывает столкновение и со стенкой. Все столкновения молекул друг с другом и со стенками сосуда считаются абсолютно упругими столкновениями шариков. При столкновении со стенкой импульс молекулы изменяется, значит на молекулу со стороны стенки действует сила (вспомните второй закон Ньютона). Но по третьему закону Ньютона с точно такой же силой, направленной в противоположную сторону, молекула действует на стенку, оказывая на нее давление. Совокупность всех ударов всех молекул о стенку сосуда и приводит к возникновению давления газа. Давление газа – это результат столкновений молекул со стенками сосуда. Если нет стенки или любого другого препятствия для молекул, то само понятие давления теряет смысл. Например, совершенно антинаучно говорить о давлении в центре комнаты, ведь там молекулы не давят на стенку. Почему же тогда, поместив туда барометр, мы с удивлением обнаружим, что он показывает какое-то давление? Правильно! Потому, что сам по себе барометр является той самой стенкой, на которую и давят молекулы.

Поскольку давление есть следствие ударов молекул о стенку сосуда, очевидно, что его величина должна зависеть от характеристик отдельно взятых молекул (от средних характеристик, конечно, Вы ведь помните про то, что скорости всех молекул различны). Эта зависимость выражается основным уравнением молекулярно-кинетической теории идеального газа :

где: p - давление газа, n - концентрация его молекул, m 0 - масса одной молекулы, v кв - средняя квадратичная скорость (обратите внимание, что в самом уравнении стоит квадрат средней квадратичной скорости). Физический смысл этого уравнения состоит в том, что оно устанавливает связь между характеристиками всего газа целиком (давлением) и параметрами движения отдельных молекул, то есть связь между макро- и микромиром.

Следствия из основного уравнения МКТ

Как уже было отмечено в предыдущем параграфе, скорость теплового движения молекул определяется температурой вещества. Для идеального газа эта зависимость выражается простыми формулами для средней квадратичной скорости движения молекул газа:

где: k = 1,38∙10 –23 Дж/К – постоянная Больцмана , T – абсолютная температура. Сразу же оговоримся, что далее во всех задачах Вы должны, не задумываясь, переводить температуру в кельвины из градусов Цельсия (кроме задач на уравнение теплового баланса). Закон трех постоянных :

где: R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная . Следующей важной формулой является формула для средней кинетической энергии поступательного движения молекул газа :

Оказывается, что средняя кинетическая энергия поступательного движения молекул зависит только от температуры, одинакова при данной температуре для всех молекул. Ну и наконец, самыми главными и часто применяемыми следствиями из основного уравнения МКТ являются следующие формулы:

Измерение температуры

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0°С, а точке кипения воды: 100°С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0°С и 100°С принимается равным 1°С.

Английский физик У.Кельвин (Томсон) в 1848 году предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

При этом изменение температуры на 1ºС соответствует изменению температуры на 1 К. Изменения температуры по шкале Цельсия и Кельвина равны. В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура T С = 20°С по шкале Кельвина равна T К = 293 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева

Уравнение состояние идеального газа является очередным следствие из основного уравнения МКТ и записывается в виде:

Данное уравнение устанавливает связь между основными параметрами состояния идеального газа: давлением, объемом, количеством вещества и температурой. Очень важно, что эти параметры взаимосвязаны, изменение любого из них неизбежно приведет к изменению еще хотя бы одного. Именно поэтому данное уравнение и называют уравнением состояния идеального газа. Оно было открыто сначала для одного моля газа Клапейроном, а впоследствии обобщено на случай большего количество молей Менделеевым.

Если температура газа равна T н = 273 К (0°С), а давление p н = 1 атм = 1·10 5 Па, то говорят, что газ находится при нормальных условиях .

Газовые законы

Решение задач на расчет параметров газа значительно упрощается, если Вы знаете, какой закон и какую формулу применить. Итак, рассмотрим основные газовые законы.

1. Закон Авогадро. В одном моле любого вещества содержится одинаковое количество структурных элементов, равное числу Авогадро.

2. Закон Дальтона. Давление смеси газов равно сумме парциальных давлений газов, входящих в эту смесь:

Парциальным давлением газа называют то давление, которое он бы производил, если бы все остальные газ внезапно исчезли из смеси. Например, давление воздуха равно сумме парциальных давлений азота, кислорода, углекислого газа и прочих примесей. При этом каждый из газов в смеси занимает весь предоставленный ему объем, то есть объем каждого из газов равен объему смеси.

3. Закон Бойля-Мариотта. Если масса и температура газа остаются постоянными, то произведение давления газа на его объем не изменяется, следовательно:

Процесс, происходящий при постоянной температуре, называют изотермическим. Обратите внимание, что такая простая форма закона Бойля-Мариотта выполняется только при условии, что масса газа остается неизменной.

4. Закон Гей-Люссака. Сам закон Гей-Люссака не представляет особой ценности при подготовке к экзаменам, поэтому приведем лишь следствие из него. Если масса и давление газа остаются постоянными, то отношение объема газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном давлении, называют изобарическим или изобарным. Обратите внимание, что такая простая форма закона Гей-Люссака выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

5. Закон Шарля. Как и закон Гей-Люссака, закон Шарля в точной формулировке для нас не важен, поэтому приведем лишь следствие из него. Если масса и объем газа остаются постоянными, то отношение давления газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном объеме, называют изохорическим или изохорным. Обратите внимание, что такая простая форма закона Шарля выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

6. Универсальный газовый закон (Клапейрона). При постоянной массе газа отношение произведения его давления и объема к температуре не изменяется, следовательно:

Обратите внимание, что масса должна оставаться неизменной, и не забывайте про кельвины.

Итак, существует несколько газовых законов. Перечислим признаки того, что нужно применять один из них при решении задачи:

  1. Закон Авогадро применяется во всех задачах где речь идет о количестве молекул.
  2. Закон Дальтона применяется во всех задачах, в которых идет речь о смеси газов.
  3. Закон Шарля применяют в задачах, когда объем газа остается неизменным. Обычно это или сказано явно, или в задаче присутствуют слова «газ в закрытом сосуде без поршня».
  4. Закон Гей-Люссака применяют, если неизменным остается давление газа. Ищите в задачах слова «газ в сосуде, закрытом подвижным поршнем» или «газ в открытом сосуде». Иногда про сосуд ничего не сказано, но по условию понятно, что он сообщается с атмосферой. Тогда считается, что атмосферное давление всегда остается неизменным (если в условии не сказано иного).
  5. Закон Бойля-Мариотта. Тут сложнее всего. Хорошо, если в задаче написано, что температура газа неизменна. Чуть хуже, если в условии присутствует слово «медленно». Например, газ медленно сжимают или медленно расширяют. Еще хуже, если сказано, что газ закрыт теплонепроводящим поршнем. Наконец, совсем плохо, если про температуру не сказано ничего, но из условия можно предположить, что она не изменяется. Обычно в этом случае ученики применяют закон Бойля-Мариотта от безысходности.
  6. Универсальный газовый закон. Его используют, если масса газа постоянна (например, газ находится в закрытом сосуде), но по условию понятно, что все остальные параметры (давление, объем, температура) изменяются. Вообще, часто вместо универсального закона можно применять уравнение Клапейрона-Менделеева, вы получите правильный ответ, только в каждой формуле будете писать по две лишние буквы.

Графическое изображение изопроцессов

Во многих разделах физики зависимость величин друг от друга удобно изображать графически. Это упрощает понимание взаимосвязи параметров, происходящих в системе процессов. Такой подход очень часто применяется и в молекулярной физике. Основными параметрами, описывающими состояние идеального газа, являются давление, объем и температура. Графический метод решения задач и состоит в изображении взаимосвязи этих параметров в различных газовых координатах. Существует три основных типа газовых координат: (p ; V ), (p ; T ) и (V ; T ). Заметьте, что это только основные (наиболее часто встречающиеся типы координат). Фантазия составителей задач и тестов не ограничена, поэтому Вы можете встретить и любые другие координаты. Итак, изобразим основные газовые процессы в основных газовых координатах.

Изобарный процесс (p = const)

Изобарным процессом называют процесс, протекающий при неизменным давлении и массе газа. Как следует из уравнения состояния идеального газа, в этом случае объем изменяется прямо пропорционально температуре. Графики изобарического процесса в координатах р V ; V Т и р Т имеют следующий вид:

V T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как при очень низких температурах газ превращается в жидкость и зависимость объема от температура меняется.

Изохорный процесс (V = const)

Изохорный процесс – это процесс нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным. Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре. Графики изохорного процесса в координатах р V ; р Т и V Т имеют следующий вид:

Обратите внимание на то, что продолжение графика в p T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как газ при очень низких температурах превращается в жидкость.

Изотермический процесс (T = const)

Изотермическим процессом называют процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным. Графики изотермического процесса в координатах р V ; р Т и V Т имеют следующий вид:

Заметим, что при выполнении заданий на графики в молекулярной физике не требуется особой точности в откладывании координат по соответствующим осям (например, чтобы координаты p 1 и p 2 двух состояний газа в системе p (V ) совпадали с координатами p 1 и p 2 этих состояний в системе p (T ). Во–первых, это разные системы координат, в которых может быть выбран разный масштаб, а во–вторых, это лишняя математическая формальность, отвлекающая от главного – от анализа физической ситуации. Основное требование: чтобы качественный вид графиков был верным.

Неизопроцессы

В задачах этого типа изменяются все три основных параметра газа: давление, объем и температура. Постоянной остается только масса газа. Наиболее простой случай, если задача решается «в лоб» с помощью универсального газового закона. Чуть сложнее, если Вам надо отыскать уравнение процесса, описывающего изменение состояния газа, или проанализировать поведение параметров газа по данному уравнению. Тогда действовать надо так. Записать данное уравнение процесса и универсальный газовый закон (или уравнение Клапейрона-Менделеева, что Вам удобнее) и последовательно исключать ненужные величины из них.

Изменение количества или массы вещества

В сущности, ничего сложного в таких задачах нет. Надо только помнить, что газовые законы не выполняются, так как в формулировках любых из них записано «при постоянной массе». Поэтому действуем просто. Записываем уравнение Клапейрона-Менделеева для начального и конечного состояний газа и решаем задачу.

Перегородки или поршни

В задачах этого типа опять применяются газовые законы, при этом необходимо учесть следующие замечания:

  • Во-первых, газ через перегородку не проходит, то есть масса газа в каждой части сосуда остается неизменной, и таким образом, для каждой части сосуда выполняются газовые законы.
  • Во-вторых, если перегородка теплонепроводящая, то при нагревании или охлаждении газа в одной части сосуда температура газа во второй части останется неизменной.
  • В-третьих, если перегородка подвижна, то давления по обе ее стороны равны в каждый конкретный момент времени (но это равное с обоих сторон давление может меняться со временем).
  • А дальше пишем газовые законы для каждого газа по отдельности и решаем задачу.

Газовые законы и гидростатика

Специфика задач состоит в том, что в давлении надо будет учитывать «довески», связанные с давлением столба жидкости. Какие тут могут быть варианты:

  • Сосуд с газом погружен под воду. Давление в сосуде будет равно: p = p атм + ρgh , где: h – глубина погружения.
  • Горизонтальная трубка закрыта от атмосферы столбиком ртути (или другой жидкости). Давление газа в трубке точно равно: p = p атм атмосферному, так как горизонтальный столбик ртути не оказывает давления на газ.
  • Вертикальная трубка с газом закрыта сверху столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм + ρgh , где: h – высота столбика ртути.
  • Вертикальная узкая трубка с газом повернута открытым концом вниз и заперта столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм – ρgh , где: h – высота столбика ртути. Знак «–» ставится, так как ртуть не сжимает, а растягивает газ. Часто ученики спрашивают, почему ртуть не вытекает из трубки. Действительно, если бы трубка была широкой, ртуть бы стекла вниз по стенкам. А так, поскольку трубка очень узкая, поверхностное натяжение на дает ртути разорваться посередине и пропустить внутрь воздух, а давление газа внутри (меньшее, чем атмосферное) удерживает ртуть от вытекания.

Как только Вы сумели правильно записать давление газа в трубке, применяйте какой-либо из газовых законов (как правило, Бойля-Мариотта, так как большинство таких процессов изотермические, или универсальный газовый закон). Применяйте выбранный закон для газа (ни в коем случае не для жидкости) и решайте задачу.

Тепловое расширение тел

При повышении температуры возрастает интенсивность теплового движения частиц вещества. Это приводит к тому, что молекулы более «активно» отталкиваются друг от друга. Из-за этого большинство тел увеличивает свои размеры при нагревании. Не совершите типичную ошибку, сами атомы и молекулы не расширяются при нагревании. Увеличиваются лишь пустые промежутки между молекулами. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

где: V 0 – объем жидкости при 0°С, V – при температуре t , γ – коэффициент объемного расширения жидкости. Обратите внимание, что все температуры в этой теме нужно брать в градусах Цельсия. Коэффициент объемного расширения зависит от рода жидкости (и от температуры, что не учитывается в большинстве задач). Обратите внимание, что численное значение коэффициента, выраженное в 1/°С или в 1/К, одинаково, так как нагреть тело на 1°С это то же самое, что нагреть его на 1 К (а не на 274 К).

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

где: l 0 , S 0 , V 0 – соответственно длина, площадь поверхности и объем тела при 0°С, α – коэффициент линейного расширения тела. Коэффициент линейного расширения зависит от рода тела (и от температуры, что не учитывается в большинстве задач) и измеряется в 1/°С или в 1/К.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: