Зависимость скорости реакции от температуры. Температурный коэффициент реакции и его особенности для биохимических процессов. уравнение Аррениуса. Химическая кинетика. Температура и скорость реакции

Температура и скорость реакции

При фиксированной температуре реакция возможна, если взаимодействующие молекулы обладают определнным запасом энергии. Аррениус эту избыточную энергию назвал энергией активации , а сами молекулы активированными .

По Аррениусу константа скорости k и энергия активации E a связаны соотношением, получившим название уравнения Аррениуса:

Здесь A – предэкспоненциальный множитель, R – универсальная газовая постоянная, T – абсолютная температура.

Таким образом, при постоянной температуре скорость реакции определяет E a . Чем больше E a , тем меньше число активных молекул и тем медленнее протекает реакция. При уменьшении E a скорость возрастает, а при E a = 0 реакция протекает мгновенно.

Величина E a характеризует природу реагирующих веществ и определяется экспериментально из зависимости k = f (T ). Записав уравнение (5.3) в логарифмическом виде и решая его для констант при двух температурах, находим E a :

γ – температурный коэффициент скорости химической реакции. Правило Вант-Гоффа имеет ограниченное применение, поскольку величина γ зависит от температуры, а вне области E a = 50–100 кДж ∙ моль –1 это правило вообще не выполняется.

На рис. 5.4 видно, что затрачиваемая на перевод начальных продуктов в активное состояние (А* – активированный комплекс) энергия затем полностью или частично вновь выделяется при переходе к конечным продуктам. Разность энергий начальных и конечных продуктов определяет ΔH реакции, которая от энергии активации не зависит.

Таким образом, по пути из исходного состояния в конечное система должна преодолеть энергетический барьер. Только активные молекулы, обладающие в момент столкновения необходимым избытком энергии, равным E a , могут преодолеть этот барьер и вступить в химическое взаимодействие. С ростом температуры увеличивается доля активных молекул в реакционнной среде.

Предэкспоненциальный множитель A характеризует общее число соударений. Для реакций с простыми молекулами A близок к теоретической величине столкновений Z , т. е. A = Z , рассчитываемой из кинетической теории газов. Для сложных молекул A Z , поэтому необходимо вводить стерический фактор P :

Здесь Z – число всех соударений, P – доля соударений, благоприятных в пространственном отношении (принимает значения от 0 до ), – доля активных, т. е. благоприятных в энергетическом отношении соударений.

Размерность константы скорости получается из соотношения

Анализируя выражение (5.3), приходим к выводу, что существуют две принципиальные возможности ускорения реакции:
а) увеличение температуры,
б) снижение энергии активации.

Задачи и тесты по теме "Химическая кинетика. Температура и скорость реакции"

  • Скорость протекания химической реакции. Катализаторы - Классификация химических реакций и закономерности их протекания 8–9 класс

    Уроков: 5 Заданий: 8 Тестов: 1

Скорость большинства химических реакций возрастает при повышении температуры. Так как концентрация реагирующих веществ, практически не зависит от температуры, то в соответствии с кинетическим уравнением реакции основное влияние температуры на скорость реакции осуществляется через изменение константы скорости реакции. При увеличении температуры возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение.

Зависимость скорости реакции от температуры можно характеризовать величиной температурного коэффициента .

Экспериментальные данные по влиянию температуры на скорость многих химических реакций при обычных температурах (273–373 К), в небольшом интервале температур показали, что повышение температуры на 10 градусов увеличивает скорость реакции в 2-4 раза (правило Вант-Гоффа).

По Вант-Гоффу- температурный коэффициент константы скорости (коэффициент Вант-Гоффа ) – это возрастание скорости реакции при увеличении температуры на 10 градусов.

(4.63)

где и - константы скорости при температурах и ; - температурный коэффициент скорости реакции.

При повышении температуры на n десятков градусов отношение констант скоростей будет равно

где n может быть как целым, так и дробным числом.

Правило Вант-Гоффа это приближенное правило. Оно применимо в узком интервале температур, так как температурный коэффициент изменяется с температурой.

Более точная зависимость константы скорости реакции от температуры выражается полуэмпирическим уравнением Аррениуса

где А - предэкспоненциальный множитель который не зависит от температуры, а определяется только видом реакции; Е – энергия активации химической реакции. Энергию активации можно представить как некоторую пороговую энергию, характеризующую высоту энергетического барьера на пути реакции. Энергия активации также не зависит от температуры.

Эта зависимость установлена в конце XIX в. голландским ученым Аррениусом для элементарных химических реакций.

Энергия активации прямой (Е 1) и обратной (Е 2) реакции связана с тепловым эффектом реакции DН соотношением (см. рис 1):

Е 1 – Е 2 = DН.

Если реакция эндотермическая и DН> 0, то Е 1 > Е 2 и энергия активации прямой реакции больше обратной. Если реакция экзотермическая, то Е 1 < Е 2 .

Уравнение Аррениуса (101) в дифференциальной форме можно записать:

Из уравнения следует, что чем больше энергия активации Е, тем быстрее растет скорость реакции с температурой.

Разделив переменные k и T и, считая E постоянной величиной, после интегрирования уравнения (4.66) получим:

Рис. 5. График lnk 1/T .

, (4.67)

где А – предэкспоненциальный множитель, имеющий размерность константы скорости. Если это уравнение справедливо, то на графике в координатах опытные точки располагаются на прямой линии под углом a к оси абсцисс и угловой коэффициент () равен , что позволяет рассчитать энергию активации химической реакции по зависимости константы скорости от температуры по уравнению .

Энергию активации химической реакции можно вычислить по значениям констант скоростей при двух различных температурах по уравнению

. (4.68)

Теоретический вывод уравнения Аррениуса сделан для элементарных реакций. Но опыт показывает, что подавляющее большинство сложных реакций также подчиняются этому уравнению. Однако для сложных реакций энергия активации и предэкспоненциальный множитель в уравнении Аррениуса не имеют определенного физического смысла.

Уравнение Аррениуса (4.67) позволяет дать удовлетворительное описание большого круга реакций в узком температурном интервале.

Для описания зависимости скорости реакции от температуры применяют также модифицированное уравнение Аррениуса

, (4.69)

в которое входят уже три параметра: А , Е и n .

Уравнение (4.69) широко используется для реакций, протекающих в растворах. Для некоторых реакций зависимость константы скорости реакции от температуры отличается от приведенных выше зависимостей. Так, например, в реакциях третьего порядка константа скорости убывает с увеличением температуры. В цепных экзотермических реакциях константа скорости реакции резко возрастает при температуре выше некоторого предела (тепловой взрыв).

4.5.1. Примеры решения задач

Пример 1. Константа скорости некоторой реакции с увеличением температуры изменялась следующим образом: t 1 = 20°С;

k 1 = 2,76 10 -4 мин. -1 ; t 2 = 50 0 С; k 2 = 137,4 10 -4 мин. -1 Определить температурный коэффициент константы скорости химической реакции.

Решение. Правило Вант –Гоффа позволяет рассчитать температурный коэффициент константы скорости по соотношению

g n = =2 ¸ 4, где n = = =3;

g 3 = =49,78 g = 3,68

Пример 2. С помощью правила Вант-Гоффа вычислить, при какой температуре реакция закончится за 15 мин., если при температуре 20 0 С потребовалось 120 мин. Температурный коэффициент скорости реакции равен 3.

Решение. Очевидно, чем меньше время протекания реакции (t ), тем больше константа скорости реакции:

3 n = 8, n ln3 = ln8, n= = .

Температура, при которой реакция закончится за 15 минут, равна:

20 + 1,9×10 = 39 0 С.

Пример 3. Константа скорости реакции омыления уксусно-этилового эфира раствором щелочи при температуре 282,4 К равна2,37л 2 /моль 2 мин. , а при температуре 287,40 К равна 3,2л 2 /моль 2 мин. Найти, при какой температуре константа скорости данной реакции равна 4?

Решение.

1. Зная значения констант скоростей при двух температурах, можно найти энергию активации реакции:

= = 40,8 кДж/моль.

2. Зная значение энергии активации, из уравнения Аррениуса

Вопросы и задания для самоконтроля.

1.Какие величины называются «аррениусовскими» параметрами?

2.Какой минимум опытных данных необходим для расчета энергии активации химической реакции?

3. Покажите, что температурный коэффициент константы скорости зависит от температуры.

4. Существуют ли отклонения от уравнения Аррениуса? Как можно описать зависимость константы скорости от температуры в этом случае?

Кинетика сложных реакций

Реакции, как правило, не протекают путем непосредственного взаимодействия всех исходных частиц с прямым переходом их в продукты реакции, а состоят из нескольких элементарных стадий. Это, прежде всего, относится к реакциям, в которых, согласно их стехиометрическому уравнению, принимает участие более трех частиц. Однако, даже реакции двух или одной частицы часто идут не по простому би- или мономолекулярному механизму, а более сложным путем, то есть через ряд элементарных стадий.

Реакции называются сложными, если расходование исходных веществ и образование продуктов реакции происходит через ряд элементарных стадий, которые могут протекать одновременно или последовательно. При этом некоторые стадии проходят с участием веществ, не являющихся ни исходными веществами, ни продуктами реакции (промежуточные вещества).

В качестве примера сложной реакции можно рассмотреть реакцию хлорирования этилена с образованием дихлорэтана. Прямое взаимодействие и должно идти через четырехчленный активированный комплекс, что сопряжено с преодолением высокого энергетического барьера. Скорость такого процесса мала. Если же в системе тем или иным путем (например, при действии света) образуются атомы , то процесс может пойти по цепному механизму. Атом легко присоединяется по двойной связи с образованием свободного радикала - . Этот свободный радикал может легко оторвать атом от молекулы с образованием конечного продукта - , в результате чего регенерируется свободный атом .

В результате этих двух стадий одна молекула и одна молекула превращаются в молекулу продукта - , а регенерированный атом вступает во взаимодействие со следующей молекулой этилена. Обе стадии имеют невысокие энергии активации, и этот путь обеспечивает быстрое протекание реакции. С учетом возможности рекомбинации свободных атомов и свободных радикалов полная схема процесса может быть записана в виде:

При всем многообразии, сложные реакции можно свести к комбинации нескольких типов сложных реакций, а именно параллельных, последовательных и последовательно-параллельных реакций.

Две стадии называются последовательными , если частица, образующаяся в одной стадии, является исходной частицей в другой стадии. Например, в приведенной схеме последовательными являются первая и вторая стадии:

.

Две стадии называются параллельными , если в обеих в качестве исходной принимают участие одни и те же частицы. Например, в схеме реакции параллельными являются четвертая и пятая стадии:

Две стадии называются последовательно-параллельными , если они являются параллельными по отношению к одной и последовательными по отношению к другой из участвующих в этих стадиях частиц.

Примером последовательно-параллельных стадий являются вторая и четвертая стадии данной схемы реакции.

К характерным признакам того, что реакция протекает по сложному механизму, относятся следующие признаки:

Несовпадение порядка реакции и стехиометрических коэффициентов;

Изменение состава продуктов в зависимости от температуры, начальных концентраций и других условий;

Ускорение или замедление процесса при добавлении в реакционную смесь небольших количеств веществ;

Влияние материала и размеров сосуда на скорость реакции и др.

При кинетическом анализе сложных реакций применяют принцип независимости: «Если в системе протекают одновременно несколько простых реакций, то основной постулат химической кинетики применяется к каждой из них, как если бы данная реакция была единственной». Этот принцип можно сформулировать и следующим образом: «Величина константы скорости элементарной реакции не зависит от того, протекают ли в данной системе одновременно другие элементарные реакции».

Принцип независимости справедлив для большинства реакций, протекающих по сложному механизму, но не является всеобщим, та как существуют реакции, в которых одни простые реакции влияют на протекание других (например, сопряженные реакции.)

Важное значение при изучении сложных химических реакций имеет принцип микрообратимости или детального равновесия :

если в сложном процессе устанавливается химическое равновесие, то скорости прямой и обратной реакции должны быть равны для каждой из элементарных стадий.

Наиболее распространенным случаем протекания сложной реакции будет случай, когда реакция идет через несколько простых стадий, протекающих с разными скоростями. Различие в скоростях приводит к тому, что кинетика получения продукта реакции может определяться закономерностями только одной реакции. Например, для параллельных реакций скорость всего процесса определяется скоростью наиболее быстрой стадии, а для последовательных – наиболее медленной. Следовательно, при анализе кинетики параллельных реакций при значительной разнице в константах можно пренебречь скоростью медленной стадии, а при анализе последовательных реакций – не обязательно определять скорость быстрой реакции.

В последовательных реакциях наиболее медленная реакция называется лимитирующей. У лимитирующей стадии самая маленькая константа скорости.

Если значения констант скоростей отдельных стадий сложной реакции близки, то необходим полный анализ всей кинетической схемы.

Введение понятия стадии, определяющей скорость, во многих случаях упрощает математическую сторону рассмотрения подобных систем и объясняет тот факт, что иногда кинетика сложных, многостадийных реакций хорошо описывается простыми уравнениями, например первого порядка.

С повышением температуры скорость химического процесса обычно увеличивается. В 1879 г. голландский ученый Я. Вант-Гофф сформулировал эмпирическое правило: с повышением температуры на 10 К скорость большинства хими­ческих реакций возрастает в 2-4 раза.

Математическая запись правила Я. Вант-Гоффа:

γ 10 = (k т+10)/k т , где k т - константа скорости реакции при температуре Т; k т+10 - константа скорости реакции при температуре Т+10; γ 10 - температурный коэффициент Вант-Гоффа. Его значение колеблется от 2 до 4. Для биохимических процессов γ 10 изменяется в пределах от 7 до 10.

Все биологические процессы протекают в определенном интер­вале температур: 45-50°С. Оптимальной температура является 36-40°С. В организме теплокровных животных эта температура поддерживается постоянной благодаря терморегуляции соответству­ющей биосистемы. При изучении биосистем пользуются темпера­турными коэффициентами γ 2 , γ 3 , γ 5 . Для сравнения их приводят к γ 10 .

Зависимость скорости реакции от температуры, в соответствии с правилом Вант-Гоффа, можно представить уравнением:

V 2 /V 1 = γ ((T 2 -T 1)/10)

Энергия активации. Значительное возрастание скорости реакции при повышении температуры нельзя объяснить только увеличением числа столкно­вений между частицами реагирующих веществ, т.к., в соответ­ствии с кинетической теорией газов, с возрастанием температуры количество столкновений увеличивается в незначительной степени. Увеличение скорости реакции с повышением температуры объяс­няется тем, что химическая реакция происходит не при любом столк­новении частичек реагирующих веществ, а только при встрече ак­тивных частиц, обладающих в момент столкновения необходимым избытком энергии.

Энергия, необходимая для превращения неактивных частичек в ак­тивные, называется энергией активации (Eа) . Энергия активации – избыточная, по сравнению со средним значе­нием, энергия, необходимая для вступления реагирующих веществ в реакцию при их столкновении. Энергию активации измеряют в килоджоулях на моль (кДж/моль). Обычно Е составляет от 40 до 200 кДж/моль.



Энергетическая диаграмма экзотермической и эндотермической реакции представлена на рис. 2.3. Для любого химического процесса можно выделить начальное, промежуточное и конечное состояния. На вершине энергетического барьера реагенты находятся в промежуточном состоянии, которое называется активированным комплексом, или переходным состоянием. Разность между энергией активированного комплекса и начальной энергией реагентов равна Еа, а разность между энергией продуктов реакции и исходных веществ (реагентов) - ΔН, тепловому эффекту реакции. Энергия активации, в отличие от ΔН, всегда величина положительная. Для экзотермической реакции (рис. 2.3, а) продукты расположены на более низком энергетическом уровне, чем реагенты (Еа < ΔН).


Рис. 2.3. Энергетические диаграммы реакций: А – экзотермической Б - эндотермической
А Б

Еа является основным фактором, определяющим скорость реакции: если Еа > 120 кДж/моль (выше энергетический барьер, меньше активных частиц в системе), реакция идет медленно; и наоборот, если Еа < 40 кДж/моль, реакция осуществляется с большой скоростью.

Для реакций с участием сложных биомолекул следует учитывать тот факт, что в активированном комплексе, образовавшемся при соударении частиц, молекулы должны быть ориентированы в пространстве определенным образом, так как трансформации подвергается лишь реагирующий участок молекулы, небольшой по от­ношению к ее размеру.

Если известны константы скорости k 1 и k 2 при температурах Т 1 и Т 2 , можно рассчитать значение Еа.

В биохимических процессах энергия активации в 2-3 раза мень­ше, чем в неорганических. Вместе с тем Еа реакции с участием чу­жеродных веществ, ксенобиотиков, значительно превышает Еа обыч­ных биохимических процессов. Этот факт является естественной биозащитой системы от влияния чужеродных веществ, т.е. есте­ственные для организма реакции происходят в благоприятных усло­виях с низкой Еа, а для чужеродных реакций Еа высокая. Это явля­ется генным барьером, характеризующим одну из главных особен­ностей протекания биохимических процессов.

Задача № 1. Взаимодействие со свободным кислородом приводит к образованию высокотоксичного диоксида азота / /, хотя эта реакция в физиологических условиях протекает медленно и при низких концентрациях не играет существенной роли в токсическом повреждении клеток, но, однако патогенные эффекты резко возрастают при его гиперпродукции. Определите, во сколько раз возрастает скорость взаимодействия оксида азота (II) c кислородом при увеличении давления в смеси исходных газов в два раза, если скорость реакции описывается уравнением ?

Решение .

1. Увеличение давления вдвое равноценно двойному увеличению концентрации (с ) и . Поэтому скорости взаимодействия, соответствующие и ,примут в соответствии с законом действия масс выражения: и

Ответ . Скорость реакции увеличится в 8 раз.

Задача № 2. Считается, что концентрация хлора (зеленоватый газ с резким запахом) в воздухе выше 25 ppm опасна для жизни и здоровья, но, имеются данные, что если пациент восстановился после острого тяжелого отравления этим газом, то остаточных явлений не наблюдается. Определите, как изменится скорость реакции: , протекающей в газовой фазе, если увеличить в 3-и раза: концентрацию , концентрацию , 3) давление / /?

Решение .

1. Если обозначить концентрации и соответственно через и , то выражение для скорости реакции примет вид: .

2. После увеличения концентраций в 3-и раза они будут равны для и для . Поэтому выражение для скорости реакции примет вид: 1) 2)

3. Увеличение давления во столько же раз увеличивает концентрацию газообразных реагирующих веществ, поэтому

4. Увеличение скорости реакции по отношению к первоначальной определяется отношением соответственно: 1) , 2) , 3) .

Ответ . Скорость реакции увеличится в: 1) , 2) , 3) раза.

Задача № 3 . Как изменяется скорость взаимодействия исходных веществ при изменении температуры с до , если температурный коэффициент реакции равен 2,5?

Решение .

1. Температурный коэффициент показывает, как меняется скорость реакции при изменении температуры на каждые (правило Вант-Гоффа): .

2. Если же изменение температуры: , то с учетом того, что , получаем: . Отсюда, .

3. По таблице антилогарифмов находим: .

Ответ . При изменении температуры (т.е. при повышении) скорость увеличится в 67,7 раз.

Задача № 4 . Вычислите температурный коэффициент скорости реакции, зная, что с повышением температуры на скорость возрастает в 128 раз.

Решение .

1. Зависимость скорости химической реакции от температуры выражается эмпирическим правилом Вант-Гоффа:

.Решая уравнение относительно , находим: , . Следовательно, =2

Ответ . =2.

Задача № 5 . Для одной из реакций были определены две константы скорости: при 0,00670 и при 0,06857. Определите константу скорости этой же реакции при .

Решение .

1. По двум значениям констант скорости реакции, используя уравнение Аррениуса, определяем величину энергии активации реакции: . Для данного случая: Отсюда: Дж/моль.

2. Рассчитаем константу скорости реакции при , используя в расчетах константу скорости при и уравнение Аррениуса: . Для данного случая: и с учетом того, что: , получаем: . Следовательно,

Ответ .

Вычисление константы химического равновесия и определение направление смещения равновесия по принципу Ле-Шателье .

Задача №6. Двуокись углерода / / в отличие от моноксида углерода / / не нарушает физиологических функций и анатомической целостности живого организма и удушающий эффект их обусловлен лишь присутствием в высокой концентрации и снижением процентного содержания кислорода во вдыхаемом воздухе. Чему равна константа равновесия реакции / /: при температуре , выраженная через: а) парциальные давления реагирующих веществ ; б) их молярные концентрации , зная, что состав равновесной смеси выражается объемными долями: , и , а общее давление в системе составляет Па?

Решение .

1. Парциальное давление газа равно общему давлению, умноженному на объемную долю газа в смеси, поэтому:

2. Подставляя эти значения в выражение константы равновесия, получим:

3. Взаимосвязь между и устанавливается на основе уравнения Менделеева ­ Клапейрона для идеальных газов и выражается равенством: , где – разность между числом молей газообразных продуктов реакции и газообразных исходных веществ. Для данной реакции: . Тогда: .

Ответ . Па. .

Задача № 7. В каком направлении сместится равновесие в следующих реакциях:

3. ;

а) при повышении температуры, б) при понижении давления, в) при увеличении концентрации водорода?

Решение .

1. Химическое равновесие в системе устанавливается при постоянстве внешних параметров ( и др.). Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая (вправо) или обратная реакции (влево). Влияние различных факторов на смещение равновесия отражено в принципе Ле Шателье.

2. Рассмотрим влияние на вышеуказанные реакции всех 3-х факторов, влияющих на химическое равновесие.

а) При повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. реакции, идущей с поглощением тепла . 1-я и 3-я реакции – экзотермические / /, следовательно, при повышении температуры равновесие сместится в сторону обратной реакции, а во 2-ой реакции / / – в сторону прямой реакции.

б) При понижении давления равновесие смещается в сторону возрастания числа молей газов, т.е. в сторону большего давления . В 1-ой и 3-ей реакциях в левой и правой частях уравнения будет одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во 2-ой реакции в левой части 4 моля газов, в правой – 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

в) При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В 1-ой реакции водород находится в продуктах, и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во 2-ой и 3-ей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону реакции, идущей с расходом водорода.

Ответ .

а) При повышении температуры в реакциях 1 и 3 равновесие будет смещено влево, а в реакции 2 – вправо.

б) На реакции 1 и 3 понижение давления не повлияет, а в реакции 2 – равновесие будет смещено влево.

в) Повышение температуры в реакциях 2 и 3 повлечет за собой смещение равновесия вправо, а в реакции 1 – влево.

1.2. Ситуационные задачи №№ с 7 по 21 для закрепления материала (выполнить в протокольной тетради).

Задача № 8. Как изменится скорость окисления глюкозы в организме при снижении температуры с до , если температурный коэффициент скорости реакции равен 4 ?

Задача № 9 .Используя приближенное правило Вант-Гоффа, вычислить, на сколько нужно повысить температуру, чтобы скорость реакции возросла в 80 раз? Температурный коэффициент скорости принять равным 3.

Задача № 10. Для практической остановки реакции применяют быстрое охлаждение реакционной смеси («замораживание реакции»). Определите, во сколько раз изменится скорость реакции при охлаждении реакционной смеси с 40 до , если температурный коэффициент реакции равен 2,7.

Задача № 11. Изотоп , применяющийся для лечения некоторых опухолей, имеет период полураспада 8,1 суток. Через какое время содержание радиоактивного йода в организме пациента уменьшится в 5 раз?

Задача № 12. Гидролиз некоторого синтетического гормона (фармпрепарата) является реакцией первого порядка с константой скорости 0,25 (). Как изменится концентрация этого гормона через 2 месяца?

Задача №13. Период полураспада радиоактивного равен 5600 лет. В живом организме за счет обмена веществ поддерживается постоянное количество . В останках мамонта содержание составило от исходного. Определите, когда жил мамонт?

Задача № 14. Период полураспада инсектицида (ядохимиката, применяемого для борьбы с насекомыми) составляет 6 месяцев. Некоторое количество его попало в водоем, где установилась концентрация моль/л. За какое время концентрация инсектицида понизится до уровня моль/л?

Задача №15. Жиры и углеводы окисляются с заметной скоростью при температуре 450 - 500°, а в живых организмах - при температуре 36 - 40°. В чем причина резкого уменьшения температуры, необходимой для окисления?

Задача № 16. Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион ), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион снижает ее до 42 кДж/моль, а фермент каталаза - до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия и каталазы. Какой вывод можно сделать об активности фермента? Реакция протекает при температуре 27 °С.

Задача № 17 Константа скорости распада пенициллина при рации Дж/моль.

1.3. Контрольные вопросы

1. Объясните, что означают термины: скорость реакции, константа скорости?

2. Как выражается средняя и истинная скорость химических реакций?

3. Почему о скорости химических реакций имеет смысл говорить только для данного момента времени?

4. Сформулируйте определение обратимой и необратимой реакции.

5. Дайте определение закона действующих масс. В равенствах, выражающих этот закон, отражена ли зависимость скорости реакции от природы реагирующих веществ?

6. Как зависит скорость реакции от температуры? Что называется энергией активации? Что такое активные молекулы?

7. От каких факторов зависит скорость гомогенной и гетерогенной реакции? Приведите примеры.

8. Что такое порядок и молекулярность химических реакций? В каких случаях они не совпадают?

9. Какие вещества называются катализаторами? Каков механизм ускоряющего действия катализатора?

10. В чем заключается понятие «отравление катализатора»? Какие вещества называют ингибиторами?

11. Что называется химическим равновесием? Почему оно называется динамическим? Какие концентрации реагирующих веществ называют равновесными?

12. Что называют константой химического равновесия? Зависит ли она от природы реагирующих веществ, их концентрации, температуры, давления? Каковы особенности математической записи для константы равновесия в гетерогенных системах?

13. Что такое фармакокинетика лекарств?

14. Процессы, происходящие с лекарственным препаратом в организме, количественно характеризуются рядом фармакокинетических праметров. Приведите основные из них.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: