Презентация - оружие массового поражения - ядерное оружие. Презентация по физике на тему: "Ядерное оружие" История возникновения ядерного оружия презентация

Cлайд 1

История создания ядерного оружия. Испытания ядерного оружия. Презентация по физике Ученицы 11б класса гимназии имени Пушкина Казак Елены.

Cлайд 2

Введение В истории человечества отдельные события становятся эпохальными. Создание атомного оружия и его применение было вызвано желанием подняться на новую ступень в овладении совершенным методом уничтожения. Как и любое событие, создание атомного оружия имеет свою историю. . .

Cлайд 3

Темы для обсуждения История создания ядерного оружия. Предпосылки к созданию атомного оружия в США. Испытания атомного оружия. Заключение.

Cлайд 4

История создания ядерного оружия. В самом конце XX века Антуан Анри Беккерель открыл явление радиоактивности. 1911-1913.Открытие атомного ядра Резерфордом и Э. Резерфорд. С начала 1939 года новое явление изучают сразу в Англии, Франции, США и СССР. Э.Резерфорд

Cлайд 5

Финишный рывок 1939-1945. В 1939 году началась Вторая мировая война. В октябре 1939 в США появляется 1-ый правительственный комитет по атомной энергии. В Германии В 1942г неудачи на германо-советском фронте повлияли на сокращение работ по ядерному оружию. США стали лидировать в создании оружия.

Cлайд 6

Испытание атомного оружия. 10 мая 1945г в «Пентагоне» в США собрался комитет по выбору целей для нанесения 1-ых ядерных ударов.

Cлайд 7

Испытания атомного оружия. Утром 6 августа 1945г над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов не вызывало тревоги. Один из самолетов спикировал и что-то бросил, затем оба самолета полетели обратно.

Cлайд 8

Ядерный приоритет 1945-1957. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600м над землей взорвался. Одним ударом город был уничтожен: из 90 тысяч зданий разрушено 65тыс.Из 250 тысяч жителей убито и ранено 160 тысяч.

Cлайд 9

Нагасаки На 11 августа была запланирована новая атака. Утром 8 августа служба погоды сообщила, что цель №2(Кокура) 11 августа будет закрыта облачностью. И поэтому вторая бомба была сброшена на Нагасаки. В этот раз погибло около 73 тысяч человек, еще 35 тыс. умерли после долгих мучений. Cлайд 11 Заключение. Хиросима и Нагасаки- это предостережение на будущее! По мнению специалистов наша планета опасно перенасыщена ядерным оружием. Такие арсеналы таят в себе огромную опасность для всей планеты, а не отдельных стран. Их создание поглощает огромные материальные средства, которые можно было бы использовать для борьбы с болезнями, неграмотностью, нищетой в ряде остальных районов мира.

Год Итальянский физик Энрико Ферми проводил ряд опытов по поглощению нейтронов разными элементами, в том числе ураном. Облучение урана давало радиоактивные ядра с различными периодами полураспада. Ферми предположил, что эти ядра принадлежат трансурановым элементам, т.е. элементам с атомным номером выше 92. Немецкий химик Ида Нодак подвергла критике предполагаемое открытие трансуранового элемента и высказала предположение о том, что под действием бомбардировки нейтронами ядра урана распадаются на ядра элементов с меньшими атомными номерами. Её рассуждения не были восприняты в среде ученых и остались без внимания.


Год В конце 1939 г. в Германии была опубликована статья Гана и Штрассмана, в которой были приведены результаты экспериментов доказывающая деление урана. В начале 1940 г. Фриш, работавший в лаборатории Нильса Бора в Дании, и Лиза Мейтнер, эмигрировавшая в Стокгольм, опубликовали статью, объяснявшую результаты экспериментов Гана и Штрассмана. Ученые в других лабораториях немедленно попытались повторить эксперименты немецких физиков, и пришли к выводу в правильности их выводов. Одновременно Жолио-Кюри и Ферми, независимо, в своих экспериментах выяснили, что при делении урана одним нейтроном выделяется более двух свободных нейтронов способных вызвать продолжение реакции деления в виде цепной реакции. Тем самым экспериментально была обоснована возможность самопроизвольного характер продолжения этой реакции расщепления ядер, в том числе и взрывного характера.


4 Теоретические предположения самоподдерживающейся цепной реакции деления были сделаны учеными ещё до открытия деления урана (сотрудники Института химической физики Ю.Харитон, Я. Зельдович и Н.Семенов в 1937г. первыми в мире предложили расчет цепной ядерной реакции деления), а Л.Сциллард ещё в 1935г. запатентовал принцип цепной реакции деления. В 1940г. ученые ЛФТИ К. Петржак и Г. Флеров обнаружили спонтанное деление ядер урана и опубликовали статью, получившую широкий резонанс среди физиков в мире. У большинства ученых-физиков уже не оставалось сомнения относительно возможности создания оружия большой разрушительной силы.


5 Манхэттенский проект 6 декабря 1941 г. Белый дом принял решение ассигновать крупные средства на создание атомной бомбы. Сам проект носил кодовое название Манхэттенского проекта. Первоначально руководителем проекта был назначен политический администратор Буш, которого довольно скоро заменил бригадный генерал Л. Гровс. Научную часть проекта возглавил Р. Оппенгеймер, который и считается отцом атомный бомбы. Проект был тщательно засекречен. Как указал сам Гровс, из 130 тысяч человек, занятых в осуществлении атомного проекта, только около нескольких десятков знали проект в целом. Ученые работали в обстановке слежки и строгой изоляции. Дело доходило буквально до курьезов: физик Г. Смит, возглавлявший одновременно два отдела, для разговора с самим собой должен был получать разрешение у Гровса.




7 Перед учеными и инженерами встают две основные проблемы получения делящегося материала для атомной бомбы – разделение изотопов урана (235 и 238) из естественного урана или искусственная наработка плутония. Перед учеными и инженерами встают две основные проблемы получения делящегося материала для атомной бомбы – разделение изотопов урана (235 и 238) из естественного урана или искусственная наработка плутония. Первая проблема с которой столкнулись участники Манхэттенского проекта – это разработка промышленного способа выделения урана-235 за счет использования ничтожного различия в массе изотопов урана. Первая проблема с которой столкнулись участники Манхэттенского проекта – это разработка промышленного способа выделения урана-235 за счет использования ничтожного различия в массе изотопов урана.


8 Вторая проблема – найти промышленную возможность превращения урана-238 в новый, элемент с эффективными свойствами деления – плутоний, который мог быть отделен от исходного урана химическим способом. Это могло быть сделано либо при использовании ускорителя (путь по которому были получены первые микрограммовые количества плутония в лаборатории Беркли), либо при использовании иного более интенсивного источника нейтронов (например: ядерного реактора). Возможность создания ядерного реактора, в котором можно поддерживать управляемую цепную реакцию деления, была продемонстрирована Э.Ферми 2 декабря 1942г. под западной трибуной стадиона Чикагского университета (центр многонаселенного района). После того как реактор был запущен и была продемонстрирована возможность поддержания регулируемой цепной реакции, Комптон, директор университета, передал ставшее теперь знаменитым шифрованное сообщение: Итальянский мореплаватель высадился в Новом Свете. Туземцы настроены дружелюбно. Вторая проблема – найти промышленную возможность превращения урана-238 в новый, элемент с эффективными свойствами деления – плутоний, который мог быть отделен от исходного урана химическим способом. Это могло быть сделано либо при использовании ускорителя (путь по которому были получены первые микрограммовые количества плутония в лаборатории Беркли), либо при использовании иного более интенсивного источника нейтронов (например: ядерного реактора). Возможность создания ядерного реактора, в котором можно поддерживать управляемую цепную реакцию деления, была продемонстрирована Э.Ферми 2 декабря 1942г. под западной трибуной стадиона Чикагского университета (центр многонаселенного района). После того как реактор был запущен и была продемонстрирована возможность поддержания регулируемой цепной реакции, Комптон, директор университета, передал ставшее теперь знаменитым шифрованное сообщение: Итальянский мореплаватель высадился в Новом Свете. Туземцы настроены дружелюбно.


9 Манхэттенский проект включал три основных центра 1. Ханфордский комплекс, который включал 9 промышленных реакторов для получения плутония. Характерными являются очень короткие сроки строительства – 1,5–2 года. 2.Заводы в местечке ОК-Ридж, где использовались электромагнитный и газодиффузионный методы разделения для получения обогащенного урана Научная лаборатория в Лос-Аламосе, где разрабатывались теоретически и практически конструкция атомной бомбы и технологический процесс ее изготовления.


10 Пушечный проектПушечный проект Наиболее простая конструкция для создания критической массы – использование пушечного метода. По этому методу одна подкритическая масса делящегося материала направлялась как снаряд в направлении другой подкритической массы, играющей роль мишени, и это позволяет создать сверхкритическую массу, которая должна взорваться. При этом скорость сближения достигала м/сек. Этот принцип пригоден для создания атомной бомбы на уране, поскольку уран – 235 имеет очень низкую скорость спонтанных делений т.е. собственный фон нейтронов. Такой принцип был использован в конструкции урановой бомбы Малыш, сброшенной на Хиросиму. Наиболее простая конструкция для создания критической массы – использование пушечного метода. По этому методу одна подкритическая масса делящегося материала направлялась как снаряд в направлении другой подкритической массы, играющей роль мишени, и это позволяет создать сверхкритическую массу, которая должна взорваться. При этом скорость сближения достигала м/сек. Этот принцип пригоден для создания атомной бомбы на уране, поскольку уран – 235 имеет очень низкую скорость спонтанных делений т.е. собственный фон нейтронов. Такой принцип был использован в конструкции урановой бомбы Малыш, сброшенной на Хиросиму. U – 235 BANG!


11 Имплозионный проект Однако оказалось, что «пушечный» принцип конструкции не может быть использован для плутония из-за высокой интенсивности нейтронов от спонтанного деления изотопа плутоний – 240. Потребовались бы такие скорости сближения двух масс, которые невозможно обеспечить этой конструкцией. Поэтому был предложен второй принцип конструкции атомной бомбы, основанный на использовании явления сходящегося внутрь взрыва (имплозии). В этом случае сходящаяся взрывная волна от взрыва обычного взрывчатого вещества направляется на расположенный внутри делящийся материал и сжимает его до тех пор, пока он не достигнет критической массы. По этому принципу была создана бомба Толстяк, сброшенная на Нагасаки. Однако оказалось, что «пушечный» принцип конструкции не может быть использован для плутония из-за высокой интенсивности нейтронов от спонтанного деления изотопа плутоний – 240. Потребовались бы такие скорости сближения двух масс, которые невозможно обеспечить этой конструкцией. Поэтому был предложен второй принцип конструкции атомной бомбы, основанный на использовании явления сходящегося внутрь взрыва (имплозии). В этом случае сходящаяся взрывная волна от взрыва обычного взрывчатого вещества направляется на расположенный внутри делящийся материал и сжимает его до тех пор, пока он не достигнет критической массы. По этому принципу была создана бомба Толстяк, сброшенная на Нагасаки. Pu-239 TNT Pu-239 BANG!


12 Первые испытания Первое испытание атомной бомбы было произведено в 5 часов 30 минут 16 июля 1945 года в штате Аломогардо (бомба имплозивного типа на плутонии). Именно этот момент можно считать началом эпохи распространения ядерного оружия. Первое испытание атомной бомбы было произведено в 5 часов 30 минут 16 июля 1945 года в штате Аломогардо (бомба имплозивного типа на плутонии). Именно этот момент можно считать началом эпохи распространения ядерного оружия. 6 августа 1945 г. бомбардировщиком Б-29, носившем имя Энола Гэй, которым управлял полковник Тиббетс, была сброшена бомба на Хиросиму (12–20 кт). Зона разрушений простиралась на 1,6 км от эпицентра и охватывала площадь 4,5 кв. км, 50 % зданий в городе было полностью разрушено. По оценке японских властей число убитых и пропавших без вести составило около 90 тысяч человек, число раненых 68 тысяч. 6 августа 1945 г. бомбардировщиком Б-29, носившем имя Энола Гэй, которым управлял полковник Тиббетс, была сброшена бомба на Хиросиму (12–20 кт). Зона разрушений простиралась на 1,6 км от эпицентра и охватывала площадь 4,5 кв. км, 50 % зданий в городе было полностью разрушено. По оценке японских властей число убитых и пропавших без вести составило около 90 тысяч человек, число раненых 68 тысяч. 9 августа 1945 г. незадолго до рассвета самолет-доставщик (вел самолет майор Чарльз Суини) и сопровождающие его два самолета поднялись с бомбой Толстяком. Город Нагасаки был разрушен на 44 %, что объяснялось горным рельефом местности. 9 августа 1945 г. незадолго до рассвета самолет-доставщик (вел самолет майор Чарльз Суини) и сопровождающие его два самолета поднялись с бомбой Толстяком. Город Нагасаки был разрушен на 44 %, что объяснялось горным рельефом местности.


13 "Малыш" (LittleBoy) и "Толстяк" - FatMan




15 3 области исследования предложенные И.В. Курчатовым выделение изотопа U-235 путем диффузии; выделение изотопа U-235 путем диффузии; получение цепной реакции в экспериментальном реакторе на естественном уране; получение цепной реакции в экспериментальном реакторе на естественном уране; изучение свойств плутония. изучение свойств плутония.


16 Кадры Стоявшие перед И. Курчатовым исследовательские задачи были невероятно трудными, но на предварительном этапе планы состояли в том, чтобы создавать скорее экспериментальные прототипы, нежели полномасштабные установки, которые понадобились бы позже. Прежде всего И. Курчатову было нужно набрать команду ученых и инженеров в штат своей лаборатории. Перед тем как выбрать их, он навестил многих своих коллег в ноябре 1942 г. Набор продолжался весь 1943 г. Интересно отметить такой факт. Когда И.Курчатов поднял вопрос о кадрах, НКВД в течении нескольких недель составило перепись всех физиков, имевшихся в СССР. Их оказалось около 3000 включая и учителей преподававших физику.


17 Урановая руда Для проведения экспериментов по подтверждению возможности цепной реакции и созданию «атомного котла», необходимо было получить достаточное количество урана. По расчетным оценкам могло понадобиться от 50 до 100 тонн. Для проведения экспериментов по подтверждению возможности цепной реакции и созданию «атомного котла», необходимо было получить достаточное количество урана. По расчетным оценкам могло понадобиться от 50 до 100 тонн. Начиная с 1945 г. Девятое управление НКВД, помогая Министерству цветной металлургии, начало широкую программу геологоразведки для нахождения дополнительных источников урана в СССР. В середине 1945 г. в Германию была направлена комиссия под руководством А. Завенягина для поиска урана, и она вернулась примерно со 100 тоннами. Начиная с 1945 г. Девятое управление НКВД, помогая Министерству цветной металлургии, начало широкую программу геологоразведки для нахождения дополнительных источников урана в СССР. В середине 1945 г. в Германию была направлена комиссия под руководством А. Завенягина для поиска урана, и она вернулась примерно со 100 тоннами.


18 Пришлось решать, какой из способов разделения изотопов окажется наилучшим. И. Курчатов разбил задачу на три части: А. Александров исследовал метод термодиффузии; И. Кикоин руководил работами по методу газовой диффузии, a Л. Арцимович изучал электромагнитный процесс. Столь же важным было решение о том, какой тип реактора следует создавать. В Лаборатории 2 рассматривались три типа реакторов: на тяжелой воде, на тяжелой воде, с графитовым замедлителем и газовым охлаждением, с графитовым замедлителем и газовым охлаждением, с графитовым замедлителем и водяным охлаждением. с графитовым замедлителем и водяным охлаждением.


19. В 1945 г. И. Курчатов получил первые нанограммовые количества путем облучения в течение трех месяцев мишени из шестифтористого урана нейтронами от радий- бериллиевого источника. Практически в то же самое время Радиевый институт им. Хлопина начал радиохимический анализ субмикрограммовых количеств плутония, полученных на циклотроне, который был возвращен в институт из эвакуации в годы войны и восстановлен. Весомые (микрограммовые) количества плутония появились в распоряжении немного позже от более мощного циклотрона в Лаборатории 2.. В 1945 г. И. Курчатов получил первые нанограммовые количества путем облучения в течение трех месяцев мишени из шестифтористого урана нейтронами от радий- бериллиевого источника. Практически в то же самое время Радиевый институт им. Хлопина начал радиохимический анализ субмикрограммовых количеств плутония, полученных на циклотроне, который был возвращен в институт из эвакуации в годы войны и восстановлен. Весомые (микрограммовые) количества плутония появились в распоряжении немного позже от более мощного циклотрона в Лаборатории 2.


20 Советский атомный проект оставался маломасштабным в период с июля 1940 г. по август 1945 г. по причине недостаточного внимания руководства страны к этой проблеме. Первая фаза от создания Урановой комиссии в Академии наук в июле 1940 г. до немецкого вторжения в июне 1941 г. ограничивалась решениями Академии наук и не получила какой-нибудь серьёзной государственной поддержки. С началом войны даже небольшие усилия исчезли. В течение следующих восемнадцати месяцев – самых трудных военных дней для Советского Союза – несколько ученых продолжали думать над ядерной проблемой. Как уже сказано выше получение разведданных заставило высшее руководство вернуться к атомной проблеме. Советский атомный проект оставался маломасштабным в период с июля 1940 г. по август 1945 г. по причине недостаточного внимания руководства страны к этой проблеме. Первая фаза от создания Урановой комиссии в Академии наук в июле 1940 г. до немецкого вторжения в июне 1941 г. ограничивалась решениями Академии наук и не получила какой-нибудь серьёзной государственной поддержки. С началом войны даже небольшие усилия исчезли. В течение следующих восемнадцати месяцев – самых трудных военных дней для Советского Союза – несколько ученых продолжали думать над ядерной проблемой. Как уже сказано выше получение разведданных заставило высшее руководство вернуться к атомной проблеме.


21 Двадцатого августа 1945 г. ГKO принял постановление 9887 об организации Специального комитета (Спецкома) для решения ядерной проблемы. Спецком возглавил Л. Берия. По воспоминаниям ветеранов советского атомного проекта, роль Берии в проекте окажется критической. Благодаря контролю над ГУЛАГом Л. Берия обеспечил неограниченное количество рабочей силы заключенных для крупномасштабного сооружения площадок советского атомного комплекса. В состав восьми членов Специального комитета вошли также М. Первухин, Г. Маленков, В. Махнев, П. Капица, И. Курчатов, Н. Вознесенский (председатель Госплана), Б. Ванников и А. Завенягин. В состав Специального комитета входили Технический совет, организованный 27 августа 1945 г., и Инженерно- технический совет, организованный 10 декабря 1945 г.


22 Руководство атомным проектом и его координацию осуществляло новое межведомственное, полу – министерство, называемое Первым главным управлением (ПГУ) Совета Министров СССР, которое было организовано 29 августа 1945 г. и которым руководил бывший министр вооружений Б. Ванников, в свою очередь, находившийся под контролем Л. Берии. ПГУ руководило проектом бомбы с 1945 г. до 1953 г. По постановлению Совета Министров от 9 апреля 1946 г. ПГУ получило права, сравнимые с правами Министерства обороны по получению материалов и координации межведомственной деятельности. Были назначены семь заместителей Б. Ванникова, в том числе А. Завенягин, П. Антропов, Е. Славский, Н. Борисов, B. Емельянов и А. Комаровский. В конце 1947 г. М. Первухин был назначен Первым заместителем руководителя ПГУ, а в 1949 г. на эту должность назначили Е. Славского. В апреле 1946 г. Инженерно-технический совет Спецкома был преобразован в Научно-технический совет (НТС) Первого главного управления. НТС сыграл важную роль в обеспечении научной экспертизы; в 40-х гг. им руководили Б. Ванников, М. Первухин и И.Курчатов. Руководство атомным проектом и его координацию осуществляло новое межведомственное, полу – министерство, называемое Первым главным управлением (ПГУ) Совета Министров СССР, которое было организовано 29 августа 1945 г. и которым руководил бывший министр вооружений Б. Ванников, в свою очередь, находившийся под контролем Л. Берии. ПГУ руководило проектом бомбы с 1945 г. до 1953 г. По постановлению Совета Министров от 9 апреля 1946 г. ПГУ получило права, сравнимые с правами Министерства обороны по получению материалов и координации межведомственной деятельности. Были назначены семь заместителей Б. Ванникова, в том числе А. Завенягин, П. Антропов, Е. Славский, Н. Борисов, B. Емельянов и А. Комаровский. В конце 1947 г. М. Первухин был назначен Первым заместителем руководителя ПГУ, а в 1949 г. на эту должность назначили Е. Славского. В апреле 1946 г. Инженерно-технический совет Спецкома был преобразован в Научно-технический совет (НТС) Первого главного управления. НТС сыграл важную роль в обеспечении научной экспертизы; в 40-х гг. им руководили Б. Ванников, М. Первухин и И.Курчатов.


23 Е. Славский, которому позднее пришлось руководить советской ядерной программой на уровне министра с 1957 г. по 1986 г., первоначально был введен в проект для контроля за производством сверхчистого графита для экспериментов И.Курчатова с ядерным котлом. Е. Славский был однокурсником А. Завенягина по горной академии и в то время являлся заместителем руководителя магниевой, алюминиевой и электронной промышленности. В дальнейшем Е. Славский был поставлен на руководство теми направлениями проекта, которые были связаны с извлечением урана из руды и его обработкой. Е. Славский, которому позднее пришлось руководить советской ядерной программой на уровне министра с 1957 г. по 1986 г., первоначально был введен в проект для контроля за производством сверхчистого графита для экспериментов И.Курчатова с ядерным котлом. Е. Славский был однокурсником А. Завенягина по горной академии и в то время являлся заместителем руководителя магниевой, алюминиевой и электронной промышленности. В дальнейшем Е. Славский был поставлен на руководство теми направлениями проекта, которые были связаны с извлечением урана из руды и его обработкой.


24 Е. Славский был суперсекретным человеком, и мало кто знает, что у него три звезды Героя и десять орденов Ленина. Е. Славский был суперсекретным человеком, и мало кто знает, что у него три звезды Героя и десять орденов Ленина. В таком широкомасштабном проекте не могло обойтись без аварийных ситуаций. Аварии случались часто, особенно в первое время. И очень часто Е. Славский первым шел в опасную зону. Много позже врачи попытались определить сколько именно он набрал рентген. Называли цифру порядка полутора тысяч, т.е. три смертельные дозы. Но он выдержал и прожил до 93 лет. В таком широкомасштабном проекте не могло обойтись без аварийных ситуаций. Аварии случались часто, особенно в первое время. И очень часто Е. Славский первым шел в опасную зону. Много позже врачи попытались определить сколько именно он набрал рентген. Называли цифру порядка полутора тысяч, т.е. три смертельные дозы. Но он выдержал и прожил до 93 лет.


25


26 Первый реактор (Ф-1) производил 100 условных единиц, т.е. 100 г плутония в сутки, новый реактор (промышленный реактор) – 300 г в сутки, но для этого требовалось загружать до 250 т урана. Первый реактор (Ф-1) производил 100 условных единиц, т.е. 100 г плутония в сутки, новый реактор (промышленный реактор) – 300 г в сутки, но для этого требовалось загружать до 250 т урана.


27 Для конструкции первой советской атомной бомбы были использованы попавшие к нам благодаря Клаусу Фуксу и разведке достаточно подробная схема и описание первой испытанной американской атомной бомбы. Эти материалы оказались в распоряжении наших ученых во второй половине 1945 года. Специалистами Арзамаса- 16 потребовалось выполнить большой объем экспериментальных исследований и расчетов, чтобы подтвердить, что информация достоверная. После этого высшим руководством было принято решение изготовить первую бомбу и провести испытание воспользовавшись уже проверенной, работоспособной американской схемой, хотя советскими учеными предлагались более оптимальные конструкторские решения. Такое решение было обусловлено в первую очередь чисто политическими причинами – продемонстрировать как можно скорее обладание атомной бомбой. В дальнейшем, конструкции ядерных боезарядов были сделаны в соответствии с теми техническими решениями, которые были разработаны нашими специалистами. 29 Полученная разведкой информация позволила на начальном этапе избежать тех трудностей и аварий, которые произошли в Лос-Аламосе в 1945 г., например, при сборке и определении критических масс плутониевых полусфер. 29Одна из аварий с критичностью в Лос Аламосе произошла в ситуации когда один из экспериментаторов, поднося к сборке из плутония последний кубик отражателя, заметил по прибору, регистрировавшему нейтроны, что сборка близка к критической. Он отдернул руку, однако кубик упал на сборку, увеличив эффективность отражателя. Произошла вспышка цепной реакции. Экспериментатор разрушил сборку руками. Он умер через 28 дней в результате переоблучения дозой 800 рентген. Всего же к 1958 году в Лос-Аламосе произошло 8 ядерных аварий. Следует отметить, что чрезвычайная засекреченность работ, отсутствие информации создавало благоприятную почву для различных фантазий в средствах массовой информации.

Презентация на тему «Атомная бомба»

Быстров Кирилл

11 класс МОУ Сукромленская СОШ, Торжокского района.

Тверской области

Учитель: Михайлов С.Б.


Атомная бомба

Однофазное или одноступенчатое взрывное устройство, в котором основной выход энергии происходит от ядерной реакции деления тяжелых ядер (урана-235 или плутония) с образованием более лёгких элементов.

Атомная бомба относится к ядерному оружию.

Классификация зарядов атомной бомбы по мощности:

  • до 1 кт - сверхмалые;
  • 1 - 10 кт - малые;
  • 10 - 100 кт - средние;
  • 100-1000 кт - крупные;
  • свыше 1 Мт - сверхкрупные.

Устройство атомной бомбы

Атомная бомба включает в себя целый ряд различных компонентов. Как правило, выделяют два основных элемента данного типа оружия: корпус и систему автоматики.

В корпусе находится ядерный заряд и автоматика, и именно он выполняют защитную функцию по отношению к различным видам воздействия (механического, теплового и так далее). А роль системы автоматики заключается в том, чтобы взрыв произошел в четко заданное время, а не раньше или позже. Состоит система автоматики из таких систем как: аварийный подрыв; предохранения и взведения; источник питания; датчики подрыва и подрыва заряда.


История создания атомной бомбы

История создания атомной бомбы, и в частности оружия, начинается в 1939 году, с открытия, сделанного Жолио-Кюри . Именно с этого момента ученые осознали, что цепная реакция урана может стать не только источником огромной энергии, но и страшным оружием. И так, в основе устройства атомной бомбы лежит использование ядерной энергии, которая выделяется при цепной ядерной реакции.

Последнее подразумевает процесс деления тяжелых ядер или синтеза легких ядер. В результате чего, атомная бомба является оружием массового поражения, за счет того, что в кратчайший промежуток времени происходит выделение огромного количества внутриядерной энергии в небольшом пространстве.


Первое испытание атомной бомбы

Первое испытание атомного оружия было проведено американскими вооруженными силами 16 июля 1945 года в местечке под названием Алмогордо, показавшее всю мощь атомной энергии. После чего, атомные бомбы, имеющиеся у сил США, были погружены на военный корабль и отправлены к берегам Японии. Отказ правительства Японии от мирного диалога позволил в действии показать всю мощь атомного оружия, жертвами которого сначала стал город Хиросима, а чуть позднее Нагасаки.

А спустя всего четыре дня, военную базу США покинули сразу два самолета с опасным грузом на борту, целями которых были Кокура и Нагасаки. От атомной бомбы в Нагасаки в первые дни погибло 73 тысячи человека. добавился список уже в 35 тысяч человек.



  • ударная волна( скорость распространения ударной волны в среде превышает скорость звука в данной среде)
  • световое излучение( мощность превышает во множество раз мощность лучей солнца)
  • проникающая радиация
  • радиоактивное заражение
  • электромагнитный импульс (ЭМИ )(выводит из строя технику и приборы)
  • рентгеновское излучение

Ударная волна

Основной поражающий

фактор ядерного взрыва.

Представляет собой

область резкого сжатия

среды, распространяющуюся

во все стороны от места

взрыва со сверхзвуковой

скоростью.


Световое излучение

Поток лучистой энергии, включающий видимые,

ультрафиолетовые и

инфракрасные лучи.

Распространяется практически

мгновенно и длится в

зависимости

от мощности ядерного

взрыва до 20с.


Электромагнитный импульс

Кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды.


Действие атомной бомбы

После взрыва произойдёт яркая вспышка, переходящая в огненную сферу, по мере остывания превращающуюся в шляпку ядерного гриба. Далее идёт световое излучение. Давление ударной волны на границе огненной сферы при максимальном её развитии 7 атмосфер (0,7 МПа) независимо от мощности, температура воздуха в волне - около 350 градусов, а в сочетании со световым излучением предметы на границе сферы могут нагреться до 1200 градусов при взрыве мощностью в 1 мегатонну.

В случае с человеком тепло разольётся по всему телу. Свет делает одежду ещё более обтягивающей, приваривая её к телу. Время свечения вспышки зависит от мощности взрыва, примерно от одной секунды при одной килотонне до сорока секунд при пятидесяти мегатонн; одна мегатонна будет светить десять секунд, двадцать килотонн (Хиросима) - три секунды. Ударная волна может идти раньше окончания свечения.



  • Советская разведка имела сведения о работах по созданию атомной бомбы в США , исходившие от физиков-атомщиков, сочувствующих СССР, в частности Клауса Фукса . Эти сведения докладывались Берией Сталину . Однако решающее значение, как полагают, имело адресованное ему в начале 1943 г. письмо советского физика Флёрова , который сумел разъяснить суть проблемы популярно. В результате 11 февраля 1943 г. было принято постановление ГКО о начале работ по созданию атомной бомбы. Общее руководство было возложено на заместителя председателя ГКО В. М. Молотова , который, в свою очередь, назначил главой атомного проекта И. Курчатова (его назначение было подписано 10 марта ). Информация, поступавшая по каналам разведки, облегчила и ускорила работу советских учёных.

  • 6 ноября 1947 года министр иностранных дел СССР В. М. Молотов сделал заявление относительно секрета атомной бомбы, сказав, что «этого секрета давно уже не существует». Это заявление означало, что Советский Союз уже открыл секрет атомного оружия, и он имеет в своём распоряжении это оружие. Научные круги Соединённых Штатов Америки приняли это заявление В. М. Молотова как блеф, считая, что русские могут овладеть атомным оружием не ранее 1952 года.
  • Американские спутники-разведчики обнаружили точное местонахождение российского тактического ядерного оружия в Калининградской области, что противоречит утверждениям Москвы, которая отрицает факт переброски туда тактического оружия.

  • Успешное испытание первой советской атомной бомбы было проведено 29 августа 1949 года на построенном полигоне в Семипалатинской области Казахстана. 25 сентября 1949 года газета « Правда » опубликовала сообщение ТАСС «в связи с заявлением президента США Трумэна о проведении в СССР атомного взрыва»:

«Ядерный клуб»

Неофициальное название группы стран, обладающих ядерным оружием. В неё входят США (c 1945), Россия (изначально Советский Союз:с 1949),Великобритания (1952), Франция (1960), КНР (1964), Индия (1974), Пакистан (1998) и КНДР (2006). Также имеющим ядерное оружие считается Израиль.

«Старые» ядерные державы США, Россия, Великобритания, Франция и Китай являются т. н. ядерной пятёркой - то есть государствами, которые считаются «легитимными» ядерными державами согласно Договору о нераспространении ядерного оружия. Остальные страны, обладающие ядерным оружием, называются «молодыми» ядерными державами.

Кроме того, на территории нескольких государств, которые являются членами НАТО и другими союзниками, находится или может находиться ядерное оружие США. Некоторые эксперты считают, что в определенных обстоятельствах эти страны могут им воспользоваться.

Слайд 1

Оружие массового поражения. Ядерное оружие. 10 класс

Слайд 2

Проверка домашнего задания:
История создания МПВО-ГО-МЧС-РСЧС. Назовите задачи ГО. Права и обязанности граждан в области ГО

Слайд 3

Первое испытание ядерного оружия
В 1896 году французским физиком Антуаном Беккерелем было открыто явление радиоактивного излучения. На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. 16 июля 1945 года, в 5:29:45 по местному времени, яркая вспышка озарила небо над плато в горах Джемеза на севере от Нью-Мехико. Характерное облако радиоактивной пыли, напоминающее гриб, поднялось на 30 тысяч футов. Все что осталось на месте взрыва - фрагменты зеленого радиоактивного стекла, в которое превратился песок. Так было положено начало атомной эре.

Слайд 4

Слайд 5

ЯДЕРНОЕ ОРУЖИЕ И ЕГО ПОРАЖАЮЩИЕ ФАКТОРЫ
Содержание: Исторические данные. Ядерное оружие. Поражающие факторы ядерного взрыва. Виды ядерных взрывов Основные принципы защиты от поражающих факторов ядерного взрыва.

Слайд 6

Первый ядерный взрыв произведен в США 16 июля 1945г. Создателем атомной бомбы является Юлиус Роберт Оппенгеймер К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235. "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Слайд 7

Юлиус Роберт Оппенгеймер
Создатель атомной бомбы:

Слайд 8

Атомная бомба «Малыш» («Little Boy»), Хиросима 6 августа 1945
Виды бомб:
Атомная бомба «Толстяк» («Fat Man»), Нагасаки 9 августа 1945

Слайд 9

Хиросима Нагасаки

Слайд 10

Утром 6 августа 1945 года американский бомбардировщик B-29 «Enola Gay», названный так по имени матери (Энола Гей Хаггард) командира экипажа, полковника Пола Тиббетса, сбросил на японский город Хиросима атомную бомбу «Little Boy» («Малыш») эквивалентом от 13 до 18 килотонн тротила. Три дня спустя, 9 августа 1945, атомная бомба «Fat Man» («Толстяк») была сброшена на город Нагасаки пилотом Чарльзом Суини, командиром бомбардировщика B-29 «Bockscar». Общее количество погибших составило от 90 до 166 тысяч человек в Хиросиме и от 60 до 80 тысяч человек - в Нагасаки

Слайд 11

В СССР первое испытание атомной бомбы (РДС) проведено 29 августа 1949г. на Семипалатинском полигоне мощностью в 22 кт. В 1953 г. в СССР прошли испытания водородной, или термоядерной, бомбы (РДС-6С). Мощность нового оружия в 20 раз превышала мощность бомбы, сброшенной на Хиросиму, хотя размерами они были одинаковыми.
История создания ядерного оружия

Слайд 12

Слайд 13

История создания ядерного оружия

Слайд 14

В 60-х годах XX века ЯО внедряется во все виды ВС СССР. 30 октября 1961 года на Новой земле прошли испытания самой мощной водородной бомбы («Царь-бомба», «Иван», «Кузькина мать») мощностью 58 мегатонн Кроме СССР и США ЯО появляется: в Англии (1952г.), во Франции (1960г.), в Китае (1964г.). Позже ЯО появилось в Индии, Пакистане, в Северной Корее, в Израиле.
История создания ядерного оружия

Слайд 15

Участники разработки первых образцов термоядерного оружия, ставшие впоследствии лауреатами Нобелевской премии
Л.Д.Ландау И.Е.Тамм Н.Н.Семенов
В.Л.Гинзбург И.М.Франк Л.В.Канторович А.А.Абрикосов

Слайд 16

Первая советская авиационная термоядерная атомная бомба.
РДС-6С
Корпус бомбы РДС-6С
Бомбардировщик ТУ-16 – носитель атомного оружия

Слайд 17

«Царь-бомба» АН602

Слайд 18

Слайд 19

Слайд 20

Слайд 21

Слайд 22

Слайд 23

Слайд 24

Слайд 25

Слайд 26

ЯДЕРНОЕ ОРУЖИЕ – это оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии выделяющейся при цепной ядерной реакции деления тяжелых ядер изотопов урана-235 и плутония-239.

Слайд 27

Мощность ядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения той же энергии.

Слайд 28

Устройство атомной бомбы
Основными элементами ядерных боеприпасов являются: корпус, система автоматики. Корпус предназначен для размещения ядерного заряда и системы автоматики, а также предохраняет их от механического, а в некоторых случаях и от теплового воздействия. Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает: - систему предохранения и взведения, - систему аварийного подрыва, - систему подрыва заряда, - источник питания, - систему датчиков подрыва. Средствами доставки ядерных боеприпасов могут являться баллистические ракеты, крылатые и зенитные ракеты, авиация. Ядерные боеприпасы применяются для снаряжения авиабомб, фугасов, торпед, артиллерийских снарядов (203,2 мм СГ и 155 мм СГ-США). Различные системы были изобретены, чтобы детонировать атомную бомбу. Самая простая система - оружие типа инжектора, в котором снаряд, сделанный из делящегося вещества, врезается, а адресанта образуя сверхкритическую массу. Атомная бомба, выпущенная Соединенными Штатами по Хиросиме 6 августа 1945 года, имела детонатор инжекторного типа. И имела энергетический эквивалент приблизительно в 20 килотонн тротила.

Слайд 29

Устройство атомной бомбы

Слайд 30

Средства доставки ЯО

Слайд 31

Ядерный взрыв
2. Световое излучение
4. Радиоактивное заражение местности
1. Ударная волна
3. Ионизирующее излучение
5. Электромагнитный импульс
Поражающие факторы ядерного взрыва

Слайд 32

(Воздушная) ударная волна - область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью. Переднюю границу волны характеризующуюся резким скачком давления, называют фронтом ударной волны. Вызывает разрушения на большом пространстве. Защита: укрытие.

Слайд 33

Действие ее продолжается несколько секунд. Расстояние 1 км ударная волна проходит за 2 с, 2 км - за 5 с, 3 км - за 8 с.
Поражения ударной волной вызываются как действием избыточного давления, так и метательным ее действием (скоростным напором), обусловленным движением воздуха в волне. Личный состав, вооружение и военная техника, расположенные на открытой местности, поражаются главным образом в результате метательного действия ударной волны, а объекты больших размеров (здания и др.)- действием избыточного давления.

Слайд 34

Очаг ядерного взрыва
Это территория подвергшаяся непосредственному воздействию поражающих факторов ядерного взрыва
Очаг ядерного поражения делится на:
Зона полных разрушений
Зона сильных разрушений
Зона средних разрушений
Зона слабых разрушений
Зоны разрушений

Слайд 35

2. Световое излучение - это видимое, ультрафиолетовое и инфракрасное излучение, действующее в течение нескольких секунд. Защита: любая преграда, дающая тень.
Поражающие факторы ядерного взрыва:

Слайд 36

Световое излучение ядерного взрыва - это видимое, ультрафиолетовое и инфракрасное излучение, действующее в течение нескольких секунд. У личного состава оно может вызвать ожоги кожи, поражение глаз и временное ослепление. Ожоги возникают от непосредственного воздействия светового излучения на открытые участки кожи (первичные ожоги), а также от горящей одежды, в очагах пожаров (вторичные ожоги). В зависимости от тяжести поражения ожоги делятся на четыре степени: первая -покраснение, припухлость и болезненность кожи; вторая -образование пузырей; третья - омертвление кожных покровов и тканей; четвертая - обугливание кожи.

Слайд 37

Поражающие факторы ядерного взрыва:
3. Проникающая радиация - интенсивный поток гамма - частиц и нейтронов, испускаемых из зоны облака ядерного взрыва и длящийся в течение 15-20 сек. Проходя через живую ткань, вызывает быстрое ее разрушение и смерть человека от острой лучевой болезни в самое ближайшее время после взрыва. Защита: укрытие или преграда (слой грунта, дерева, бетона и т. д.)
Альфа-излучение представляет собой ядра гелия-4 и может быть легко остановлено листом бумаги. Бета-излучение это поток электронов, для защиты от которого достаточно алюминиевой пластины. Гамма-излучение обладает способностью проникать и в более плотные материалы.

Слайд 38

Поражающее действие проникающей радиации характеризуется величиной дозы излучения, т. е. количеством энергии радиоактивных излучений, поглощенной единицей массы облучаемой среды. Различают экспозиционную и поглощенную дозу. Экспозиционную дозу измеряют в рентгенах (Р). Один рентген - это такая доза гамма- излучения, которая создает в 1 см3 воздуха около 2 млрд. пар ионов.

Слайд 39

Снижение поражающего действия проникающей радиации в зависимости от защитной среды и материала
Слои половинного ослабления радиации

Слайд 40

4. Радиоактивное заражение местности – при взрыве ЯО образуется на поверхности земли «след», образуемый выпадением осадков из радиоактивного облака. Защита: средства индивидуальной защиты(СИЗ).
Поражающие факторы ядерного взрыва:

Слайд 41

След радиоактивного облака на равнинной местности при неменяющихся направлении и скорости ветра имеет форму вытянутого эллипса и условно делится на четыре зоны: умеренного (А), сильного (Б), опасного (В) и чрезвычайно опасного (Г) заражения. Границы зон радиоактивного заражения с разной степенью опасности для людей принято характеризовать дозой гамма-излучения, получаемой за время от момента образования следа до полного распада радиоактивных веществ D∞ (изменяется в радах), или мощностью дозы излучения (уровнем радиации) через 1 ч после взрыва

Слайд 42

Зоны радиактивного заражения
Зона чрезвычайно опасного заражения
Зона опасного заражения
Зона сильного заражения
Зона умеренного заражения

Слайд 43

5. Электромагнитный импульс: возникает на короткий промежуток времени и может вывести из строя всю электронику противника (бортовые компьютеры самолета и т. д.)
Поражающие факторы ядерного взрыва:

Слайд 44

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов (один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш". 9 августа еще одна бомба была сброшена над городом Нагасаки. Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранение, ожоги, облучились. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи. Эти бомбардировки потрясли весь мир. Считается, что это событие положило начало гонке ядерных вооружений и противостоянию двух политических систем того времени на новом качественном уровне.

Слайд 45

Виды ядерных взрывов

Слайд 46

Наземный взрыв
Воздушный взрыв
Высотный взрыв
Подземный взрыв
Виды ядерных взрывов

Слайд 47

Виды ядерных взрывов
Генерал Томас Фаррелл: «Эффект, который на меня произвел взрыв, можно назвать великолепным, изумительным и в то же время ужасающим. Человечество еще никогда не создавало явления такой невероятной и устрашающей силы».

Слайд 48

Название испытания: Trinity (Троица) Дата: 16 июля 1945 Место: полигон в Аламогордо, штат Нью-Мексико

Слайд 49

Название испытания: Baker Дата: 24 июля 1946 Место: Лагуна атолла Бикини Тип взрыва: Подводный, глубина 27.5 метра Мощность: 23 килотонны.

Слайд 50

Название испытания: Truckee Дата: 9 июня 1962 года Место: Остров Рождества Мощность: более 210 килотонн

Слайд 51

Название испытания: Castle Romeo Дата: 26 марта 1954 Место: на барже в кратере Bravo, атолл Бикини Тип взрыва: на поверхности Мощность: 11 мегатонн.

Слайд 52

Название испытания: Castle Bravo Дата: 1 марта 1954 Место: атолл Бикини Тип взрыва: на поверхности Мощность: 15 мегатонн.

История создания ядерного оружия. Испытания ядерного оружия. Презентация по физике Ученицы 11б класса гимназии имени Пушкина Казак Елены. Введение В истории человечества отдельные события становятся эпохальными. Создание атомного оружия и его применение было вызвано желанием подняться на новую ступень в овладении совершенным методом уничтожения. Как и любое событие, создание атомного оружия имеет свою историю. . . Темы для обсуждения - История создания ядерного оружия. - Предпосылки к созданию атомного оружия в США. - Испытания атомного оружия. - Заключение. История создания ядерного оружия. В самом конце XX века Антуан Анри Беккерель открыл явление радиоактивности. 1911-1913.Открытие атомного ядра Резерфордом и Э. Резерфорд. С начала 1939 года новое явление изучают сразу в Англии, Франции, США и СССР. Э.Резерфорд Финишный рывок 19391945. В 1939 году началась Вторая мировая война. В октябре 1939 в США появляется 1-ый правительственный комитет по атомной энергии. В Германии В 1942г неудачи на германо-советском фронте повлияли на сокращение работ по ядерному оружию. США стали лидировать в создании оружия. Испытание атомного оружия. 10 мая 1945г в «Пентагоне» в США собрался комитет по выбору целей для нанесения 1-ых ядерных ударов. Испытания атомного оружия. Утром 6 августа 1945г над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов не вызывало тревоги. Один из самолетов спикировал и что-то бросил, затем оба самолета полетели обратно. Ядерный приоритет 1945-1957. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600м над землей взорвался. Одним ударом город был уничтожен: из 90 тысяч зданий разрушено 65тыс.Из 250 тысяч жителей убито и ранено 160 тысяч. Нагасаки На 11 августа была запланирована новая атака. Утром 8 августа служба погоды сообщила, что цель №2(Кокура) 11 августа будет закрыта облачностью. И поэтому вторая бомба была сброшена на Нагасаки. В этот раз погибло около 73 тысяч человек, еще 35 тыс. умерли после долгих мучений. Ядерное оружие в СССР. 3 ноября 1945 года в Пентагон поступил доклад №329 по отбору 20-ти наиболее важных целей на территории СССР. В США зрел план войны. Начало боевых действий было назначено на 1 января 1950г. Советский атомный проект отставал от американского ровно на четыре года. В декабре 1946г И.Курчатов запустил первый в Европе атомный реактор. Но как бы то ни было, атомная бомба у СССР появилась, а 4 октября 1957 года СССР запустил в космос первый искусственный спутник Земли. Так было предупреждено начало Третьей мировой войны! И.Курчатов Заключение. Хиросима и Нагасаки- это предостережение на будущее! По мнению специалистов наша планета опасно перенасыщена ядерным оружием. Такие арсеналы таят в себе огромную опасность для всей планеты, а не отдельных стран. Их создание поглощает огромные материальные средства, которые можно было бы использовать для борьбы с болезнями, неграмотностью, нищетой в ряде остальных районов мира.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: