Достижения и перспективы развития космической биологии. Проект по астрономии и биологии на тему "космонавтика". Пьянство и психические расстройства

Вторая половина XX в. ознаменовалась не только проведением теоретических исследований по изысканию путей освоения космического пространства, но и практическим созданием и запуском автоматических аппаратов на околоземные орбиты и на другие планеты, первым полетом человека в космос и длительными полетами на орбитальных станциях, высадкой человека на поверхность Луны. Теоретические исследования в области космической техники и конструирования управляемых летательных аппаратов резко стимулировали развитие многих наук, в том числе новой отрасли знаний - космической медицины.

Основными задачами космической медицины являются следующие:

исследование влияний условий космического полета на организм человека, включая изучение феноменологии и механизмов возникновения сдвигов физиологических показателей в космическом полете;

разработка методов отбора и подготовки космонавтов;

Космическая медицина в своем историческом развитии прошла путь от моделирования факторов космического полета в лабораторных условиях и при полетах животных на ракетах и спутниках до исследований, связанных с длительными полетами орбитальных станций и полетами международных экипажей.

В становлении и развитии космической биологии и медицины в СССР важное значение имели труды основоположников космонавтики К. Э. Циолковского, Ф. А. Цандера и других, сформулировавших ряд биологических проблем, разрешение которых должно было явиться необходимой предпосылкой для освоения человеком космического пространства. Теоретические аспекты космической биологии и медицины зиждется на классических положениях таких основоположников естествознания, как И. М. Сеченов, К. А. Тимирязев, И. П. Павлов, В. В. Докучаев, Л. А. Орбели и других, в трудах которых красной нитью отражено учение о взаимодействии организма и внешней среды, разработаны принципиальные вопросы приспособления организма к изменяющимся условиям внешней среды.

Большую роль для формирования ряда положений и разделов космической медицины сыграли работы, выполненные в области авиационной медицины, а также исследования, проведенные на биофизических ракетах и космических кораблях в 50-60-х годах.

Практическое освоение космического пространства с помощью пилотируемых полетов началось с исторического полета Ю. А. Гагарина, первого в мире космонавта, совершенного 12 апреля 1961 г. на корабле «Восток». Все мы помним его простую человеческую фразу. «Поехали», произнесенную во время старта космического корабля «Восток», В этой фразе лаконично и в то же время достаточно емко охарактеризовалось величайшее достижение человечества. Помимо всего прочего, полет Ю. А. Гагарина был экзаменом на зрелость как космонавтики в целом, так и космической медицины в частности.

Медико-биологические исследования, проведенные до этого полета, и разработанная на их основе система жизнеобеспечения обеспечили нормальные условия обитания в кабине космического корабля, необходимые космонавту для выполнения полета. Созданная к этому времени система отбора и подготовки космонавтов, система биотелеметрического контроля за состоянием и работоспособностью человека в полете и гигиеническими параметрами кабины определили возможность и безопасность полета.

Однако вся предшествующая работа, все многочисленные полеты животных на космических кораблях не могли ответить на некоторые вопросы, связанные с полетом человека. Так, например, до полета Ю. А. Гагарина не было известно, как условия невесомости влияют на чисто человеческие функции: мышление, память, координацию движений, восприятие окружающего мира и другое. Только полет первого человека в космос показал, что эти функции не претерпевают существенных изменений в невесомости. Вот почему Ю. А. Гагарина во всем мире называют первооткрывателем «звездных дорог», человеком, проложившим путь всем последующим пилотируемым полетам.

За 20 лет, прошедших с полета Ю. А. Гагарина, человечество неуклонно и всесторонне продолжало осваивать космическое пространство. И в связи с этим славным юбилеем представляется удобный случай не только проанализировать сегодняшние достижения космической медицины, но и сделать исторический экскурс в прошедшее и предшествующее ему десятилетия.

Космические полеты на всем своем развитии можно условно разделить на несколько этапов. Первый этап - это подготовка полета человека в космическое пространство, он охватывал значительный период времени. Его сопровождали такие исследования, как: 1) обобщение данных физиологии и авиационной медицины, изучавших влияние неблагоприятных факторов внешней среды на организм животных и человека; 2) проведение многочисленных лабораторных исследований, в которых имитировались некоторые факторы космического полета и исследовалось их влияние на человеческий организм; 3) специально подготовленные эксперименты на животных при полетах на ракетах в верхние слои атмосферы, а также во время орбитальных полетов на искусственных спутниках Земли.

Основные тогда задачи были направлены на изучение вопроса о принципиальной возможности полета человека в космос и решение проблемы создания систем, обеспечивающих пребывание человека в кабине космического корабля во время орбитального полета. Дело в том, что в то время существовало определенное мнение ряда достаточно авторитетных ученых о несовместимости жизни человека с условиями длительной невесомости, так как при этом могли якобы возникать значительные нарушения функции дыхания и кровообращения. Кроме того, опасались, что человек мог бы не выдержать психологическую напряженность полета.

причем продолжительность невесомости в зависимости от высоты полета составляла от 4 до 10 мин. Анализ результатов этих исследований показал, что при полете на ракетах наблюдались лишь умеренные изменения физиологических показателей, проявлявшиеся в учащении пульса и увеличении артериального давления при воздействии ускорений во время взлета и посадки ракеты (с тенденцией к нормализации или даже снижению этих показателей во время пребывания в невесомости).

В целом воздействие факторов полета на ракетах не вызывало существенных нарушений физиологических функций животных. Биологические эксперименты при вертикальных запусках ракет показали, что собаки удовлетворительно переносят достаточно большие перегрузки и кратковременную невесомость.

В 1957 г. в СССР был осуществлен запуск второго искусственного спутника Земли с собакой Лайкой. Это событие имело принципиальное значение для космической медицины, поскольку впервые позволяло высокоорганизованному животному достаточно длительное время находиться в условиях невесомости. В результате была установлена удовлетворительная переносимость животным условий космического полета. Последующие эксперименты с шестью собаками во время полетов второго, третьего, четвертого и пятого советских кораблей-спутников, возвращаемых на Землю, позволили получить большой материал о реакциях основных физиологических систем организма высокоорганизованных животных (как в полете, так и на Земле, включая послеполетный период).

небольшие консервированные участки кожи кролика и человека, насекомые, черные и белые лабораторные мыши и крысы, морские свинки. Все исследования, проведенные с помощью кораблей-спутников, дали обширный экспериментальный материал, твердо убедивший ученых в безопасности полета человека (с точки зрения здоровья) в космос.

В тот же период были решены и задачи по созданию систем жизнеобеспечения космонавтов - системы подачи кислорода в кабину, удаления углекислого газа и вредных примесей, а также питания, водообеспечения, врачебного контроля и утилизации продуктов жизнедеятельности человека. В этих работах принимали самое непосредственное участие специалисты космической медицины.

Второй этап, совпавший с первым десятилетием пилотируемых полетов (1961-1970 гг.), характеризовался кратковременными космическими полетами человека (от одного витка за 108 мин до 18 сут). Он начинается с исторического полета Ю. А. Гагарина.

Результаты медико-биологических исследований, выполненных за это время, надежно доказали не только возможность пребывания человека в условиях космического полета, но и сохранение у него достаточной работоспособности при выполнении различных заданий в ограниченной по объему кабине космического корабля и при работе в безопорном пространстве вне космического корабля. Однако при этом был выявлен ряд изменений со стороны двигательной сферы, сердечно-сосудистой системы, системы крови и других систем человеческого организма.

Было также установлено, что приспособление космонавтов к обычным условиям земного существования после космических полетов длительностью, начиная с 18 сут, протекает с известными трудностями и сопровождается более выраженным напряжением регуляторных механизмов, чем приспособление космонавта к невесомости. Таким образом, при дальнейшем увеличении времени полета требовалось создать системы соответствующих профилактических средств, усовершенствовать системы медицинского контроля и разработать методики прогноза состояния членов экипажей в полете и после его завершения.

Во время пилотируемых полетов по указанным программам, наряду с медицинскими исследованиями экипажей, проводились также и биологические эксперименты. Так, на борту кораблей «Восток-3», «Восток-6», «Восход», «Восход-2», «Союз» находились такие биологические объекты, как лизогенные бактерии, хлорелла, традесканция, клетки хелла; нормальные и раковые клетки человека, сухие семена растений, черепахи.

Третий этап пилотируемых космических полетов связан с длительными полетами космонавтов на борту орбитальных станций, он совпадает с истекшим десятилетием (1971 -1980 гг.). Отличительной особенностью пилотируемых полетов на данном этапе, кроме значительной продолжительности пребывания человека в полете, является увеличение объема свободного пространства жилых помещений - от кабины космического корабля до обширных зон обитания внутри орбитальной станции. Последнее обстоятельство имело двоякое значение для космической медицины: с одной стороны, стало возможным размещать на борту станции разнообразную аппаратуру для медико-биологических исследований и средства профилактики неблагоприятного воздействия невесомости, а с другой - значительно снизить влияние на человеческий организм со стороны факторов ограничения двигательной активности - гипокинезии (т. е. связанной с малыми размерами свободного пространства).

Следует сказать, что на орбитальных станциях могут быть созданы и более комфортные условия быта, личной гигиены и т. д. А применение комплекса профилактических средств может в значительной степени сгладить неблагоприятные реакции организма на невесомость, что имеет большой положительный эффект. Однако, с другой стороны, этим самым в определенной степени сглаживаются реакции человеческого организма на невесомость, что затрудняет анализ возникающих сдвигов для различных систем организма человека, характерных для условий невесомости.

Впервые долговременная орбитальная станция («Салют») была запущена в СССР в 1971 г. В последующие годы осуществлялись пилотируемые полеты на борту орбитальных станций «Салют-3, -4, -5, -6» (причем четвертая основная экспедиция станции «Салют-6» находилась в космосе 185 сут). Многочисленные медико-биологические исследования, выполненные во время полета орбитальных станций, показали, что с увеличением продолжительности пребывания человека в космосе прогрессирования выраженности реакций организма на условия полета в целом не наблюдалось.

Применявшиеся комплексы профилактических средств обеспечили поддержание хорошего состояния здоровья и работоспособности космонавтов в таких полетах, а также способствовали сглаживанию реакций и облегчали приспособление к земным условиям в послеполетном периоде. Важно отметить, что проведенные медицинские исследования не выявили каких-либо сдвигов в организме космонавтов, препятствующих планомерному увеличению продолжительности полетов. Вместе с тем со стороны, некоторых систем организма были обнаружены функциональные изменения, которые являются предметом дальнейшего рассмотрения.

К настоящему времени космические полеты совершили уже 99 человек различных стран на борту 78 космических кораблей и 6 долговременных орбитальных станций2. Суммарное время путешествий составило около 8 человеко-лет. В СССР на 1 января 1981 г. осуществлено 46 пилотируемых космических полетов, в которых участвовало 49 советских космонавтов и 7 космонавтов из социалистических стран. Таким образом, на протяжении двух десятилетий пилотируемых космических полетов темп и масштабы проникновения человека в космическое пространство стремительно возрастали.

Далее мы рассмотрим основные результаты исследований по космической медицине, выполненных за это время. Во время космических полетов человеческий организм может подвергаться действию различных неблагоприятных факторов, которые условно можно разделить на следующие группы: 1) характеризующие космическое пространство как своеобразную физическую среду (крайне низкое барометрическое давление, отсутствие кислорода, ионизирующее излучение и т. д.); 2) обусловленные динамикой летательного аппарата (ускорение, вибрация, невесомость); 3) связанные с пребыванием космонавтов в герметической кабине космического корабля (искусственная атмосфера, особенности питания; гипокинезия и т. д.); 4) психологические особенности космического полета (эмоциональная напряженность, изоляция и т. д.).

жизнеобеспечения создает необходимые условия для жизни и работы в пространстве кабины. Исключением в этой группе факторов является космическая радиация: при некоторых солнечных вспышках уровень космической радиации может настолько увеличиться, что стенки кабины не смогут защитить космонавта от действия космических лучей.

и в том, что ученые пока еще не научились моделировать полный спектр космической радиации в условиях Земли. Это естественно создает значительные сложности в изучении биологического действия космической радиации и в разработке мер защиты.

В этом направлении проводятся различные исследования по созданию электростатической защиты космического корабля, т. е. делаются попытки создать вокруг космического корабля электромагнитное поле, которое будет отклонять заряженные частицы, не пропуская их к кабине. Большой объем работ осуществляется и в области разработки фармакохимических средств профилактики и лечения лучевых поражений.

Большинство факторов второй группы с успехом моделируется в условиях земного эксперимента и изучается уже давно (вибрация, шумы, перегрузки). Их действие на человеческий организм вполне понятно, а, следовательно, ясны и меры профилактики возможных расстройств. Наиболее важным и специфичным при космическом полете является фактор невесомости. Следует отметить, что при длительном действии он может изучаться только в условиях реального полета, поскольку в этом случае моделирование его на Земле является весьма приближенным.

Наконец, третья и четвертая группы факторов полета не столько уж и являются космическими, однако условия космического полета вносят так много своего, присущего только этому виду деятельности, что исследование возникающих при этом психологических особенностей, а также режимов труда и отдыха, психологической совместимости и других факторов представляет собой самостоятельную и весьма сложную проблему.

Совершенно очевидно, что многогранность проблем космической медицины не позволяет исчерпывающе рассмотреть все из них, и здесь мы остановимся только на некоторых таких проблемах.

Медицинский контроль и медицинские исследования в полете

В комплексе мероприятий, обеспечивающих безопасность космонавтов в полете, важная роль принадлежит медицинскому контролю, задачей которого является оценка и прогнозирование состояния здоровья членов экипажа и выдача рекомендаций на проведение профилактических и лечебных мероприятий.

Особенность медицинского контроля в космическом полете состоит в том, что «пациентами» врачей являются здоровые, физически отлично подготовленные люди. В этом случае задача медицинского контроля состоит главным образом в выявлении функциональных приспособительных изменений, которые могут возникнуть в человеческом организме под влиянием факторов космического полета (в первую очередь невесомости), в оценке и анализе этих изменений, в определении показаний к применению профилактических средств, а также в; выборе наиболее оптимальных режимов их использования.

Обобщение результатов медицинских исследований в космических полетах и многочисленных исследований с моделированием факторов полета в условиях Земли позволяет получить данные о влиянии разнообразных нагрузок на человеческий организм, о допустимых пределах колебаний физиологических показателей и об особенностях реакций организма в этих условиях.

Следует подчеркнуть, что подобные исследования по космической медицине, уточняющие наши знания о нормальных проявлениях жизнедеятельности человеческого организма и более четко проводящие грань между его нормальными и измененными реакциями, имеют большое значение для выявления начальных признаков отклонений не только у экипажей космических кораблей в полете, но и в клинической практике, при анализе начальных и скрытых форм заболеваний и их профилактике.

качестве источников информации используются данные бесед врача с космонавтами, отчеты космонавтов о своем самочувствии и результаты само- и взаимоконтроля, анализ радиопереговоров (включая спектральный анализ речи). Важными источниками информации являются данные объективной регистрации физиологических параметров, показателей среды в кабине космического корабля (давление, содержание кислорода и углекислоты, влажность, температура и т. д.), а также анализ результатов выполнения наиболее сложных операций по управлению кораблем и научно-технических экспериментов.

Эта информация с помощью телеметрических систем поступает в центр управления полетом, где обрабатывается с помощью вычислительных машин и анализируется врачами. Физиологические параметры, подлежащие регистрации и передаче на Землю, определяются в соответствии с особенностью программы полета и спецификой деятельности экипажа. При оценке состояния здоровья космонавтов первостепенное значение имеет информация о состоянии наиболее жизненно важных систем человеческого организма (дыхание и кровообращение), а также об изменениях физической работоспособности космонавтов.

б необычной среде обитания, помогают выяснять механизмы изменения физиологических функций и приспособления организма к условиям невесомости. Все это необходимо для разработки средств профилактики и для планирования медицинского обеспечения последующих полетов.

Объем медицинской информации, передаваемой с помощью биотелеметрии на Землю, был в различных полетах неодинаковым. В первых полетах по программе «Восток» и «Восход», когда наши знания о действии факторов космического полета на человеческий организм были весьма ограничены, регистрировался достаточно широкий спектр физиологических параметров, поскольку необходимо было не только контролировать состояние здоровья космонавтов, но и широко изучать его физиологические реакции на условия полета. При полетах по программе «Союз» количество физиологических показателей, передаваемых на Землю, ограничено и было оптимальным для контроля за состоянием здоровья космонавтов.

который был и раньше, во время полетов на орбитальных станциях осуществлялись периодические углубленные медицинские обследования, проводимые раз в 7-10 сут. Последние включали в себя клинические электрокардиографические обследования (в покое и при функциональных пробах), регистрацию показателей артериального и венозного давлений, изучение фазовой структуры сердечного цикла по данным кинетокардиографии, исследования ударного и минутного объема сердца, пульсового кровенаполнения различных областей тела (методом реографии) и ряд других обследований.

В качестве функциональных проб использовалась дозированная физическая нагрузка организма космонавта на велоэргометре («космическом велосипеде»), а также проба с приложением отрицательного давления к нижней части тела. В последнем случае с помощью вакуумного комплекта «Чибис», представляющего собой гофрированные «брюки», создавалось отрицательное давление в области нижней части живота и нижних конечностей, что вызывало прилив крови к этим областям, подобный тому, который имеет место на Земле во время пребывания человека в вертикальном положении.

Такая имитация вертикальной позы позволяет получить дополнительную информацию об ожидаемом состоянии экипажа в послеполетном периоде. Указанное обстоятельство представляется чрезвычайно важным, поскольку, как это было установлено в предыдущих полетах, длительное пребывание в невесомости сопровождается снижением так называемой ортостатической устойчивости, которая проявляется выраженными сдвигами в показателях сердечно-сосудистой системы при нахождении человека в вертикальном положении.

На орбитальной станции «Салют-6» (см. таблицу) проводилось измерение массы тела человека, исследовался объем голени, а также изучалось состояние вестибулярного аппарата и функции внешнего дыхания. В ходе полета осуществлялся забор проб крови и других жидкостей организма, проводилось исследование микрофлоры внешних покровов, слизистых оболочек человека и поверхностей станции, а также осуществлялся анализ проб воздуха. Взятые в полете материалы для исследований доставлялись с экспедициями посещения на Землю для детального анализа.

Методы исследования в космических полетах

Космические корабли Годы запуска Методы физиологических измерений

«Востоки» 1961-1963 Электрокардиография (1-2 отведения, пнемография, сейсмокардиография и кинетокардиография (характеризуют механическую функцию сердца), электроокулография (регистрация движений глаз), электроэнцефалография (регистрация биотоков коры головного мозга), кожно-гальванический рефлекс.

«Восходы» 1964-1965 Электрокардиография, пневмография, сейсмокардиография, электроэнцефалография, регистрация двигательных актов письма.

одиночные 1967-1970 Электрокардиография, пневмография, сейсмокардиография, температура тела.

тахоосциллография (для измерения показателей артериального давления), флебография (для регистрации кривой пульса яремной вены и определения венозного давления, реграфия (для изучения ударного и минутного объема сердца и пульсового кровенаполнения различных областей тела), измерение массы тела, объема голени, забор крови, изучение внешнего дыхания, микробиологические исследования, а также исследования водно-солевого обмена и др.

Во время длительных полетов на орбитальных комплексах «Салют» - «Союз» важное значение придавалось медицинскому управлению. Медицинское управление является частью (подсистемой) более общей системы «экипаж - корабль - центр управления полетом», и его функции направлены на сохранение максимальной организованности всей системы в целом путем поддержания хорошего состояния здоровья экипажа и необходимой его работоспособности. С этой целью медицинская служба тесно взаимодействовала с экипажем и специалистами по планированию программы полета. Рабочим органом управления была группа медицинского обеспечения в центре управления полетом, вступавшая во взаимный контакт с экипажем, с консультативно-прогностической группой и с другими группами центра управления полетом.

Результаты обследований и формировавшиеся на их основе рекомендации по использованию профилактических средств, режиму труда и отдыха и другим медицинским мероприятиям систематически обсуждались с экипажем и принимались им к исполнению. Все это создавало атмосферу благожелательности и делового сотрудничества между группой медицинского обеспечения и экипажем в решении задачи сохранения здоровья экипажа в полете и в подготовке для встречи его с Землей.

Средства профилактики

предпосылкой для разработки профилактических средств и рациональной системы медицинского контроля в длительных космических полетах. Имеющиеся к настоящему времени данные позволяют сформулировать некоторые рабочие гипотезы, которые могут рассматриваться как схема для проведения дальнейших исследований.

Главным звеном в патогенезе действия фактора невесомости является, по-видимому, снижение функциональной нагрузки на ряд систем человеческого организма в связи с отсутствием веса и связанного с этим механического напряжения структур тела. Функциональная недогруженность человеческого организма в состоянии невесомости проявляется, вероятно, как изменение афферентации с механорецепторов, а также как изменение распределения жидких сред и снижение нагрузки »а опорно-двигательный аппарат космонавта и его тоническую мускулатуру.

всегда имеет место напряжение структур, обусловленное силой веса. При этом большое количество мышц, а также связки, некоторые суставы, противодействуя этой тенденции, постоянно находятся под нагрузкой независимо от положения тела человека. Под влиянием веса внутренние органы стремятся и к смещению по направлению к Земле, натягивая фиксирующие их связки.

Многочисленные нервные воспринимающие приборы (рецепторы), находящиеся в мышцах, связках, внутренних органах, сосудах и т. д., посылают импульсы в центральную нервную систему, сигнализируя о положении тела. Такие же сигналы поступают из вестибулярного аппарата, расположенного во внутреннем ухе, где кристаллики углекислых солей (столиты), смещая нервные окончания под влиянием своего веса, сигнализируют о перемещении тела.

Однако при длительном полете и непременном его атрибуте - невесомости - вес тела и отдельных его частей отсутствует. Рецепторы мышц, внутренних органов, связок, сосудов при нахождении в невесомости работают как бы «в другом ключе». Сведения о положении тела поступают главным образом из зрительного анализатора, и нарушается выработанное на протяжении всего развития человеческого организма взаимодействие анализаторов пространства (зрения, вестибулярного аппарата, мышечного чувства и др.). Мышечный, тонус и нагрузка на мышечную систему в целом уменьшаются, поскольку отсутствует необходимость противостоять им силе веса.

В результате в невесомости уменьшается общий объем импульсации с воспринимающих элементов (рецепторов), идущий в центральную нервную систему. Это приводит к снижению активности центральной нервной системы, что, в свою очередь, влияет на регуляцию внутренних органов и других функций человеческого организма. Однако организм человека - структура чрезвычайно пластичная, и через некоторое время пребывания человека в состоянии невесомости отмечается приспособление его организма к этим условиям, причем работа внутренних органов уже происходит на новом, ином (по сравнению с Землей) функциональном уровне взаимодействия между системами.

благодаря ее весу стремится в нижележащие части тела (ноги, нижняя часть живота). В связи с этим организм космонавта вырабатывает систему механизмов, препятствующих такому перемещению. В невесомости ведь нет силы, кроме энергии сердечного толчка, которая бы способствовала перемещению крови к нижним участкам тела. В результате наблюдается прилив крови к голове и органам грудной клетки.

вен и предсердий. Это является поводом к сигналу в центральную нервную систему о включении механизмов, способствующих уменьшению избытка жидкости в крови. В результате возникает ряд рефлекторных реакций, приводящих к увеличению выведения жидкости, а вместе с ней и солей из организма. В конечном итоге может снизиться вес тела и измениться содержание некоторых электролитов, в частности калия, а также измениться состояние сердечно-сосудистой системы.

Перераспределение крови играет, по-видимому, определенную роль в развитии вестибулярных нарушений (космическая форма укачивания) в начальном периоде пребывания в невесомости. Однако ведущая роль здесь все же принадлежит, вероятно, нарушению слаженной работы органов чувств в условиях невесомости, осуществляющих пространственную ориентировку.

к соответствующему изменению в так называемых антигравитационных мышцах, снижению их тонуса, атрофии. Снижение тонуса и силы мышц, в свою очередь, способствует ухудшению регуляции вертикальной позы и нарушению походки у космонавта в послеполетном периоде. Вместе с тем причиной этих явлений может быть и перестройка двигательного стереотипа в процессе.

Приведенные представления о механизме изменения некоторых функций человеческого организма в условиях невесомости, естественно, довольно схематичны, еще не во всех своих звеньях подтверждены экспериментально. Мы провели эти рассуждения лишь с целью показать взаимосвязанность всех функций организма космонавта, когда изменения в одном звене вызывают целую гамму реакций различных систем. С другой стороны, важно подчеркнуть обратимость изменений, широкие возможности приспособления человеческого организма к действию самых необычных факторов внешней среды.

Описанные изменения функций организма космонавта в состоянии невесомости могут рассматриваться как отражение приспособительных реакций человека к новым условиям существования - к отсутствию силы веса. Естественно, что эти изменения во многом определяют соответствующие реакции со стороны человеческого организма, которые имеют место при возвращении космонавта на Землю и при последующем приспособлении его организма к условиям Земли, или, как говорят врачи, при реадаптации.

Выявленные после кратковременных полетов в космос сдвиги в ряде функций организма космонавта, прогрессирующие с увеличением продолжительности полетов, поставили вопрос о разработке средств профилактики неблагоприятного влияния невесомости. Теоретически можно было предположить, что применение искусственной силы тяжести (ИСТ) явится наиболее радикальным средством защиты от невесомости. Однако создание ИСТ порождает ряд физиологических проблем, связанных с пребыванием во вращающейся системе, а также технических проблем, которые должны обеспечить создание ИСТ в космическом полете.

В связи с чем исследователи еще задолго до начала космических полетов начали поиски других путей для профилактики неблагоприятных изменений в человеческом организме в условиях космического полета. В ходе этих исследований испытывались многочисленные методы для профилактики неблагоприятного влияния невесомости, не связанные с применением ИСТ. К ним относятся, например, физические методы, направленные на уменьшение перераспределения крови в организме космонавта во время или после окончания полета, а также на стимуляцию нервно-рефлекторных механизмов, регулирующих кровообращение в вертикальном положении тела. Для этого используются приложение отрицательного давления к нижней части тела, накладываемые на руки и ноги надувные манжеты, костюмы для создания перепада положительного давления, вращение на центрифуге малого радиуса, инерционно-ударные воздействия, электростимуляция мышц нижних конечностей, эластичные и противоперегрузочные костюмы и т. д.

Среди других методов подобной профилактики отметим физические нагрузки, направленные на поддержание тренированности организма и стимуляцию некоторых групп рецепторов (физические тренировки, нагрузочные костюмы, нагрузка на скелет); воздействия, связанные с регуляцией питания (добавление солей, белков и витаминов в пищу, нормирование питания и водопотребления); целенаправленное воздействие с помощью так называемых медикаментозных средств и измененной газовой среды.

Профилактические средства против каких-либо неблагоприятных сдвигов в организме космонавта могут быть эффективны лишь в том случае, если они назначаются с учетом механизма этих нарушений. Применительно к невесомости профилактические средства должны быть направлены в первую очередь на восполнение дефицита мышечной активности, а также на воспроизведение эффектов, которые в условиях Земли обусловливаются весом крови и тканевой жидкости.

физических упражнений на беговой дорожке и велоэргометре, а также силовых упражнений с эспандерами; 2) создание постоянной нагрузки на опорно-двигательный аппарат и скелетную мускулатуру космонавта (ежесуточное пребывание в течение 10-16 ч в нагрузочных костюмах); 3) тренировки с приложением отрицательного давления к нижней части тела, проводимые в конце полета; 4) применение водно-солевых добавок в день окончания полета; 5) применение послеполетного противоперегрузочного костюма.

С помощью специальных костюмов и системы резиновых амортизаторов при выполнении «космической зарядки» создавалась нагрузка величиной 50 кг в направлении продольной оси тела, а также статическая нагрузка на основные группы антигравитационных мышц.

Физические тренировки проводились также и на велоэргометре - аппарате, аналогичном велосипеду, но стоящем на месте. На нем космонавты педалировали ногами или руками, создавая тем самым соответствующую нагрузку на соответствующие мышечные группы.

Нагрузочные костюмы воспроизводили постоянную статическую нагрузку на опорно-двигательный аппарат и скелетную мускулатуру космонавта, что в определенной степени компенсирует отсутствие земной силы тяжести. Конструктивно костюмы выполнены как полуприлегающие комбинезоны, включающие в себя эластичные элементы типа резиновых амортизаторов.

Для создания отрицательного давления на нижнюю часть тела применялся вакуумный комплект в виде брюк, представляющих собой герметический мешок на каркасе, в котором можно создавать разрежение. При уменьшении давления создаются условия оттока крови к ногам, что способствует такому ее распределению, которое характерно для человека, находящегося в вертикальной позе в условиях Земли.

Водно-солевые добавки предназначались для задержки воды в организме и увеличения объема плазмы крови. Послеполетный профилактический костюм, надеваемый под скафандр перед спуском, был предназначен для создания избыточного давления на ноги, что препятствует на Земле скоплению крови в нижних конечностях при вертикальном положении тела и благоприятствует сохранению нормального кровообращения при переходе из горизонтального положения в вертикальное.

Изменение основных функций человеческого организма в невесомости

Главным итогом изучения космического пространства (с медицинской точки зрения) стало доказательство возможности не только длительного пребывания человека в условиях космического полета, но и разносторонней его деятельности там. Это дает теперь право рассматривать космическое пространство как среду будущего обитания человека, а космический аппарат и сам полет в космос - как наиболее эффективный, непосредственный способ изучения реакций человеческого организма в этих условиях. К настоящему времени накопилась достаточно большая информация о реакциях различных физиологических систем организма космонавта в разные фазы полета и в послеполетном периоде.

Симптомокомплекс, внешне сходный с болезнью укачивания (снижение аппетита, головокружение, усиление слюноотделения, тошнота, а иногда и рвота, пространственные иллюзии), в той или иной степени выраженности наблюдается примерно у каждого третьего космонавта и проявляется в первые 3-6 сут полета. Важно отметить, что в настоящее время пока еще невозможно достоверно предсказывать степень выраженности этих явлений у космонавтов в полете. У некоторых космонавтов признаки укачивания проявлялись также и в первые сутки после возвращения на Землю. Развитие симптомокомплекса укачивания в полете в настоящее время объясняется изменением функционального состояния вестибулярного аппарата космонавта и нарушением взаимодействия его сенсорных систем, а также особенностями гемодинамики (перераспределением крови) в условиях невесомости.

Симптомокомплекс перераспределения крови в верхнюю часть тела имеет место почти у всех космонавтов в полете, возникает в первые сутки и затем в различные сроки, в среднем в течение недели, постепенно сглаживается (но не всегда полностью исчезает). Этот симптомокомплекс проявляется ощущением прилива крови и тяжести в голове, заложенностью носа, сглаженностью морщин и одутловатостью лица, увеличением кровенаполнения и давления в венах шеи и показателей кровенаполнения головы. Объем голени уменьшается. Описанные явления связаны с перераспределением крови вследствие отсутствия ее веса в невесомости, что приводит к уменьшению скопления крови в нижних конечностях и увеличению притока в верхнюю часть тела.

некоторых рабочих операций и затрудняется оценка мышечных усилий, необходимых для выполнения ряда движений. Однако уже в течение нескольких первых суток полета эти движения вновь обретают необходимую точность, уменьшаются необходимые усилия для их выполнения и эффективность двигательной работоспособности возрастает. При возвращении на Землю субъективно увеличивается вес предметов и собственного тела, изменяется регуляция вертикальной позы. При послеполетном исследовании двигательной сферы у космонавтов выявляется уменьшение объема нижних конечностей, некоторая потеря мышечной массы и субатрофия антигравитационной мускулатуры, главным образом длинных и широких мышц спины.

Изменения функций сердечно-сосудистой системы в длительных космических полетах проявляются как тенденция к небольшому снижению некоторых показателей артериального давления, повышение венозного давления в области вен шеи и снижение его в области голени. Выброс крови при сокращении сердца (ударный объем) первоначально увеличивается, а минутный объем кровообращения имеет на протяжении полета тенденцию к превышению предполетных величин. Показатели кровенаполнения головы обычно увеличивались, нормализация их происходила на 3-4 месяцах полета, а в области голени уменьшались.

Реакция сердечно-сосудистой системы на функциональные пробы с приложением отрицательного давления к нижней части тела и физической нагрузкой претерпевала некоторые изменения в полете. При пробе с приложением отрицательного давления реакции космонавта в отличие от земных были более выраженными, что указывало на развитие явлений ортостатической детренированности. Вместе с тем переносимость проб с физической нагрузкой в полугодовых полетах практически во всех обследованиях оценивалась как хорошая, и реакции качественно не отличались от предполетного периода. Это свидетельствовало о том, что с помощью профилактических мероприятий удается стабилизировать реакцию организма на функциональные пробы и даже в ряде случаев достигнуть их меньшей выраженности, чем в предполетном периоде.

В послеполетном периоде при переходе из горизонтального положения в вертикальное, а также при проведении ортостатической пробы (пассивное вертикальное положение на наклонном столе) выраженность реакций больше, чем до полета. Это объясняется тем, что в условиях Земли кровь снова обретает свой вес и устремляется к нижним конечностям и вследствие снижения у космонавтов тонуса сосудов и мышц здесь может скапливаться больше крови, чем обычно. В результате происходит отток крови от мозга.

может резко снизиться артериальное давление, мозг будет испытывать недостаток крови, а следовательно, и кислорода.

солей после полета. Сразу после полетов уменьшается выведение жидкости почками и увеличивается выведение ионов кальция и магния, а также ионов калия. Отрицательный баланс калия в сочетании с увеличением выведения азота, вероятно, указывает на уменьшение клеточной массы и снижение способности клеток в полном объеме ассимилировать калий. Исследования некоторых функций почек с помощью нагрузочных проб выявили рассогласование в системе ионорегуляции в виде разнонаправленного изменения экскреции жидкости и некоторых ионов. При анализе полученных данных складывается впечатление, что сдвиги в водно-солевом балансе обусловлены изменением систем регуляции и гормонального статуса под влиянием фактора полета.

Уменьшение минеральной насыщенности костной ткани (потеря кальция и фосфора костями) отмечено в ряде полетов. Так, после 175- и 185-суточных полетов эти потери составляли 3,2-8,3%, что существенно меньше, чем после длительного постельного режима. Такое относительно небольшое уменьшение минеральных компонентов в костной ткани является весьма существенным обстоятельством, поскольку рядом ученых деминерализация костной ткани рассматривалась как один из факторов, который может явиться препятствием для увеличения длительности космических полетов.

Биохимические исследования показали, что под влиянием длительных космических полетов происходит перестройка процессов метаболизма, обусловленная приспособлением организма космонавта к условиям невесомости. Выраженных изменений обмена веществ при этом не наблюдается.

и восстанавливается примерно через 1-1,5 месяца после полета. Исследования содержания эритроцитов в крови во время и после полетов представляют большой интерес, поскольку, как известно, средняя продолжительность жизни эритроцитов составляет 120 сут.

объема плазмы крови. В результате включаются компенсаторные механизмы, стремящиеся сохранить основные константы циркулирующей крови, что приводит (вследствие уменьшения объема плазмы крови) к адекватному уменьшению эритроцитарной массы. Быстрое же восстановление эритроцитарной массы после возвращения на Землю невозможно, поскольку образование эритроцитов происходит медленно, в то время как жидкая часть крови (плазма) восстанавливается! значительно быстрее. Такое быстрое восстановление объема циркулирующей крови приводит к кажущемуся дальнейшему уменьшению содержания эритроцитов, которое восстанавливается через 6-7 недель после окончания полета.

Таким образом, результаты гематологических исследований, полученные во время и после длительных космических полетов, позволяют оптимистически оценивать возможность приспособления системы крови космонавта к условиям полета и ее восстановление в послеполетном периоде. Это обстоятельство является чрезвычайно важным, поскольку в специальной литературе возможные гематологические изменения, ожидаемые в длительных космических полетах, рассматриваются как одна из проблем, способная воспрепятствовать дальнейшему увеличению продолжительности полетов.

после полета. Необходимо все же сказать, что мы еще не все знаем о реакциях космонавтов в длительном полете, не со всеми неблагоприятными явлениями можем бороться. Работы в этом плане предстоит еще много.

Западное медицинское исследование и наблюдение за 12 астронавтами показало, что при продолжительном нахождении в условиях микрогравитации сердце человека на 9,4 процента сильнее приобретает сферическую форму, что в свою очередь может вызывать самые различные проблемы с его работой. Особенно актуальной эта проблема может стать при длительных космических путешествиях, например, к Марсу.

«Сердце в космосе работает совсем не так, как оно работает в условиях земной гравитации, что в свою очередь может привести к утрате его мышечной массы», — говорит доктор Джемс Томас из NASA.

«Все это повлечет за собой серьезные последствия после возвращения на Землю, поэтому в настоящий момент мы ищем возможные способы, которые позволят избежать или по крайней мере снизить эту потерю мышечной массы».

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле — испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Пьянство и психические расстройства


Несмотря на то, что проведенный NASA анонимный опрос снял подозрения в частом употреблении астронавтами алкогольных напитков, в 2007 году произошли два случая, когда фактически пьяных астронавтов из NASA допустили для полета внутри российского космического корабля «Союз». При этом лететь людям разрешили даже после того, как медики, готовившие этих астронавтов к полету, а также другие участники миссии рассказали начальству о весьма горячей кондиции своих коллег.

Согласно политике безопасности того времени, NASA говорило об официальном запрете употребления астронавтами алкоголя за 12 часов перед тренировочными полетами. Действие этого правила также негласно предполагалось и на время космических полетов. Однако после вышеописанного инцидента, NASA возмутила такая беспечность астронавтов, что агентство решило сделать это правило в отношении космических полетов официальным.

Бывший астронавт Майк Маллэйн рассказал однажды о том, что астронавты употребляли алкоголь перед полетом для дегидратации организма (алкоголь обезвоживает), чтобы в конечном итоге снизить нагрузку на мочевой пузырь и в момент запуска внезапно не захотеть в туалет.

Свое место среди опасностей в рамках космических миссий имел также и психологический аспект. Во время космической миссии Skylab 4 астронавтам настолько «надоело» общаться с центром управления космическими полетами, что они почти на сутки отключили радиосвязь и игнорировали поступающие от NASA сообщения. После этого инцидента ученые стараются определить и решить потенциальные негативные психологические эффекты, которые могут возникнуть в рамках более стрессовых и продолжительных миссий к Марсу.

Недостаток сна и использование снотворных


Десятилетнее исследование показало, что последние недели перед запуском и во время начала космических миссий астронавты явно недосыпают. Среди опрошенных три из четырех признавались, что употребляли медицинские средства, которые помогали им уснуть, даже невзирая на то, что употребление подобных медикаментов могло быть опасным во время управления космическим аппаратом и при работе с другим оборудованием. Опаснее всего ситуация в таком случае могла бы оказаться тогда, когда астронавты принимали одно и то же лекарство и в одно и то же время. В таком случае в момент возникшей чрезвычайной ситуации, требующей экстренного решения, они могли бы ее просто проспать.

Несмотря на то, что NASA приписало каждому астронавту спать как минимум восемь с половиной часов в день, большинство из них каждодневно отдыхали всего около шести часов во время выполнения миссий. Серьезность такой нагрузки на организм усугублялась еще и тем, что в течение последних трех месяцев тренировок перед полетом люди ежедневно спали менее шести с половиной часов.

«Будущие миссии на Луну, Марс и дальше потребуют разработки более эффективных мер для решения вопросов нехватки сна и оптимизации производительности человека во время космического полета», — говорит старший исследователь данного вопроса доктор Чарльз Кзейлер.

«Эти меры могут включать изменения графика работ, которые будут выполняться с учетом воздействия на человека определенных световых волн, а также изменения в поведенческой стратегии экипажа для более комфортного входа в состояние сна, которое обязательно необходимо для восстановления здоровья, сил и хорошего настроения на следующий день».

Потеря слуха


показали, что еще со времен миссий космических шаттлов у некоторых астронавтов отмечались случаи временной значительной и менее значительной потери слуха. Отмечались они чаще всего при воздействии на людей высоких звуковых частот. У членов экипажа советской космической станции «Салют-7» и российского «Мира» также регистрировались незначительные или весьма значительные эффекты снижения слуха после возвращения на Землю. Опять же во всех этих случаях причиной частичной или полной временной потери слуха являлось воздействие высоких звуковых частот.

Экипажу Международной космической станции предписано каждодневное ношение беруш. Для снижения шума на борту МКС, помимо прочих мер, было предложено использование специальных звукоизоляционных прокладок внутри стен станции, а также установка более тихих вентиляторов.

Однако, помимо шумного фона, на потерю слуха могут влиять и другие факторы: например, состояние атмосферы внутри станции, повышение внутричерепного давления, а также повышенный уровень углекислого газа внутри станции.

В 2015 году NASA планирует с помощью экипажа МКС начать изучение возможных способов избегания эффектов потери слуха во время годичных миссий. Ученые хотят посмотреть, насколько долго можно избегать подобных эффектов, и выяснить приемлемый риск, связанный с потерей слуха. Ключевой задачей эксперимента будет определение того, как минимизировать потерю слуха полностью, а не только во время конкретно взятой космической миссии.

Камни в почках


У каждого десятого человека на Земле рано или поздно проявляется проблема камней в почках. Однако данный вопрос становится гораздо острее, когда речь заходит об астронавтах, потому как в условиях космоса кости организма начинают терять полезные вещества еще быстрее, чем на Земле. Внутрь организма выделяются соли (фосфат кальция), которые проникают через кровь и накапливаются в почках. Эти соли могут утрамбовываться и обретать форму камней. При этом размер этих камней может варьироваться от микроскопического до вполне себе серьезного — вплоть до размера с грецкий орех. Проблема заключается в том, что эти камни могут блокировать сосуды и другие потоки, которые питают орган или выводят из почек лишние вещества.

Для астронавтов риск развития почечных каменей опаснее тем, что в условия микрогравитации может снижаться объем крови внутри организма. Кроме того, многие астронавты не пьют по 2 литра жидкостей в день, которые, в свою очередь, могли бы обеспечить полную гидратацию их организма и не позволять камням застаиваться в почках, выводя их частички вместе с мочой.

Отмечается, что как минимум у 14 американских астронавтов развилась проблема с камнями в почках практически разу же после завершения их космических миссий. В 1982 году был зафиксирован случай острой боли у члена экипажа на борту советской станции «Салют-7». Космонавт в течение двух дней мучился от сильнейших болей, в то время как его товарищу ничего не оставалось, как беспомощно наблюдать за страданиями своего коллеги. Сначала все подумали на острый аппендицит, однако через время вместе с мочой у космонавта вышел небольшой почечный камень.

Ученые весьма долгое время разрабатывали специальную ультразвуковую машину размером с настольный компьютер, которая позволяет обнаруживать камни в почках и выводить их с помощью импульсов звуковых волн. Думается, на борту корабля, следующего к Марсу, такая штука могла бы определенно пригодиться.

Заболевания легких


Несмотря на то, что мы пока с точностью не знаем, какие негативные эффекты для здоровья может вызывать пыль с других планет или астероидов, ученым все же известны некоторые весьма неприятные последствия, которые могут проявляться в результате воздействия лунной пыли.

Самый серьезный эффект вдыхания пыли, вероятнее всего, отразится на легких. Однако невероятно острые частицы лунной пыли могут нанести серьезные повреждения не только легким, но и сердцу, заодно вызвав целый букет различных недугов, начиная от сильнейшего воспаления органов и заканчивая раком. Аналогичные эффекты может вызывать, например, асбест.

Острые частицы пыли могут нанести вред не только внутренним органам, но и вызывать воспаление и ссадины на коже. Для защиты необходимо использование специальных многослойных кевлароподобых материалов. Лунная пыль может с легкостью повредить роговицы глаз, что в свою очередь может оказаться наиболее серьезной экстренной ситуацией для человека в космосе.

Ученые с сожалением отмечают, что неспособны смоделировать лунный грунт и провести полный набор тестов, необходимых для определения воздействия лунной пыли на организм. Одна из сложностей в решении этой задачи заключается в том, что на Земле частицы пыли не находятся в вакууме и не подвергаются постоянному воздействию радиации. Лишь дополнительные исследования пыли непосредственно на поверхности самой Луны, а не в лаборатории, смогут обеспечить ученых необходимыми данными для разработки эффективных методов защиты от этих крошечных токсичных убийц.

Сбой иммунной системы


Наша иммунная система меняется и отвечает на любые, даже самые малейшие изменения в нашем организме. Недостаток сна, недостаточный прием питательных веществ или даже обычный стресс — все это ослабляет нашу иммунную систему. Но это на Земле. Изменение же иммунной системы в космосе может в конечном итоге обернуться обычной простудой либо нести потенциальную опасность в развитии куда более серьезных заболеваний.
В космосе распределение иммунных клеток в организме изменяется не сильно. Куда большую угрозу для здоровья могут повлечь за собой изменения в функционировании этих клеток. Когда функционирование клетки снижается, уже подавленные вирусы, находящиеся в человеческом организме, могут заново пробудиться. И сделать это фактически скрытно, без проявления симптомов болезни. При повышении активности иммунных клеток иммунная система слишком остро реагирует на раздражители, вызывая аллергические реакции и другие побочные эффекты вроде сыпи на коже.

«Такие вещи, как радиация, микробы, стресс, микрогравитация, нарушение сна и даже изоляция — все они могут повлиять на изменение работы иммунной системы членов экипажа», — говорит иммунолог NASA Брайан Крушин.

«В рамках долгих космических миссий будет повышаться риск развития инфекций, гиперчувствительности, а также аутоиммунных проблем у астронавтов».

Для решения проблем с иммунной системой NASA планирует использовать новые методы антирадиационной защиты, новый подход к сбалансированному питанию и лекарствам.

Радиационные угрозы


Нынешнее очень необычное и весьма продолжительное отсутствие солнечной активности может способствовать опасным изменениям уровня радиации в космосе. Ничего подобного не происходило почти в течение последних 100 лет.

«Несмотря на то, что подобные события необязательно являются останавливающим фактором для долгих миссий к Луне, астероидам и даже к Марсу, галактическая космическая радиация сама по себе является тем фактором, который может ограничить запланированное время проведения этих миссий», — говорит Нэйтан Швадрон из Института земных, океанических и космических исследований.

Последствия такого рода воздействия могут быть самыми разными, начиная от лучевой болезни и заканчивая развитием рака или поражением внутренних органов. Кроме того, опасные уровни радиационного фона сокращают эффективность антирадиационной защиты космического корабля примерно на 20 процентов.

В рамках всего лишь одной миссии на Марс астронавт может подвергнуться 2/3 той безопасной дозы излучения, которой человек может подвергнуться в худшем случае в течение всей своей жизни. Это излучение может вызвать изменения в ДНК и увеличить риск развития рака.

«Если говорить о накопительной дозе, то это тоже самое, что проводить полное КТ-сканирование организма каждые 5-6 дней», — говорит ученый Кэри Цейтлин.

Когнитивные проблемы


При симуляции состояния нахождения в космосе ученые обнаружили, что воздействие высокозаряженных частиц даже в малых дозах заставляет лабораторных крыс реагировать на окружение гораздо медленнее, и при этом грызуны становятся более раздражительными. Наблюдение за крысами также показало изменение в составе белка в их мозге.

Однако ученые спешат отметить, что не на всех крысах проявлялись одинаковые эффекты. Если это правило действительно и в случае с астронавтами, то, по мнению исследователей, они смогли бы определить биологический маркер, указывающий и предсказывающий скорое проявление этих эффектов у астронавтов. Возможно, этот маркер даже позволил бы найти способ снизить негативные последствия от воздействия радиации.

Более серьезную проблему представляет болезнь Альцгеймера.

«Воздействие уровня радиации, эквивалентного тому, которое придется испытать человеку во время полета на Марс, может способствовать развитию когнитивных проблем и ускорять изменения в работе мозга, которые чаще всего ассоциируют с болезнью Альцгеймера», — говорит невролог Керри О’Бэнион.

«Чем дольше находишься в космосе, тем больше риск развития заболевания».

Один из утешительных фактов заключается в том, что ученые уже успели исследовать один из самых неудачных сценариев воздействия излучения. Они за один раз подвергли лабораторных мышей такому уровню излучения, которое являлось бы характерным для всего времени в рамках миссии на Марс. В свою очередь, люди при полете на Марс будут подвергаться излучению дозированно, в течение трех лет полета. Ученые считают, что человеческий организм может адаптироваться к таким небольшим дозам.

Помимо этого, отмечается, что пластик и легковесные материалы могут обеспечить людям более эффективную защиту от излучения, по сравнению с используемым сейчас алюминием.

Потеря зрения


У некоторых астронавтов отмечается развитие серьезных проблем со зрением после пребывания в космосе. Чем дольше длится космическая миссия, тем вероятнее шанс подобных печальных последствий.

По крайней мере среди 300 американских астронавтов, проходивших медицинскую проверку с 1989 года, проблемы со зрением наблюдались у 29 процентов людей, находившихся в космосе в течение двухнедельных космических миссий, и у 60 процентов людей, которые в течение нескольких месяцев работали на борту Международной космической станции.

Врачи из Техасского университета провели сканирование мозга у 27 астронавтов, проведших в космосе более месяца. У 25 процентов из них наблюдалось уменьшение объема передне-задней оси одного или сразу двух глазных яблок. Такое изменение приводит к дальнозоркости зрения. Опять же отмечалось, чем дольше человек находится в космосе, тем вероятнее данное изменение.

Ученые считают, что объясняться этот негативный эффект может подъемом жидкости к голове в условиях мигрогравитации. В данном случае в черепной коробке начинает накапливаться цереброспинальная жидкость, повышается внутричерепное давление. Просачиваться сквозь кость жидкость не может, поэтому начинает создавать давление на внутреннюю часть глаз. Исследователи пока не уверены, будет ли уменьшаться данный эффект у астронавтов, прибывающих в космосе более шести месяцев. Однако вполне очевидно, что выяснить это будет нужно до того момента, как засылать людей на Марс.

Если проблема вызвана исключительно внутричерепным давлением, то одним из возможных вариантов ее решения будет создание условий искусственной гравитации, каждый день по восемь часов, во время сна астронавтов. Однако говорить о том, поможет ли данный метод или нет — пока рано.

«Эта проблема требует решения, потому что в противном случае она может оказаться главной причиной невозможности длительных космических путешествий», — говорит ученый Марк Шелхамер.

Наука биология включает в себя массу разных разделов, больших и малых дочерних наук. И каждая из них имеет важное значение не только в жизни человека, но и для всей планеты в целом.

Второе столетие подряд люди пытаются изучать не только земное разнообразие жизни во всех ее проявлениях, но и узнать, есть ли жизнь за пределами планеты, в космических просторах. Этим вопросам занимается особая наука - космическая биология. О ней и пойдет речь в нашем обзоре.

Раздел

Данная наука относительно молодая, но очень интенсивно развивающаяся. Основными аспектами изучения являются:

  1. Факторы космического пространства и их влияние на организмы живых существ, жизнедеятельность всех живых систем в условиях космоса или летательных аппаратов.
  2. Развитие жизни на нашей планете при участии космоса, эволюция живых систем и вероятность существования биомассы вне пределов нашей планеты.
  3. Возможности построения замкнутых систем и создания в них настоящих жизненных условий для комфортного развития и роста организмов в космическом пространстве.

Космическая медицина и биология являются тесно связанными друг с другом науками, совместно изучающими вопросы физиологического состояния живых существ в космосе, их распространенности в межпланетных просторах и эволюции.

Благодаря исследованиям этих наук стало возможным подбирать оптимальные условия для нахождения людей в космосе, причем не нанося при этом никакого вреда здоровью. Собран огромный материал по наличию жизни в космосе, возможностям растений и животных (одноклеточных, многоклеточных) жить и развиваться в невесомости.

История развития науки

Корни космической биологии уходят еще в древнее время, когда философы и мыслители - естествоиспытатели Аристотель, Гераклит, Платон и другие - наблюдали за звездным небом, пытаясь выявить взаимосвязь Луны и Солнца с Землей, понять причины их влияния на сельскохозяйственные угодья и животных.

Позже, в средние века, начались попытки определения формы Земли и объяснения ее вращения. Долгое время на слуху была теория, созданная Птолемеем. Она говорила о том, что Земля - это а все остальные планеты и небесные тела движутся вокруг нее

Однако нашелся другой ученый, поляк Николай Коперник, который доказал ошибочность этих утверждений и предложил свою, гелиоцентрическую систему строения мира: в центре - Солнце, а все планеты движутся вокруг. При этом Солнце - тоже звезда. Его взгляды поддерживали последователи Джордано Бруно, Ньютон, Кеплер, Галилей.

Однако именно космическая биология как наука появилась много позже. Только в XX веке русский ученый Константин Эдуардович Циолковский разработал систему, позволяющую людям проникать в космические глубины и потихоньку их изучать. Его по праву считают отцом этой науки. Также большую роль в развитии космобиологии сыграли открытия в физике и астрофизике, квантовой химии и механике Эйнштейна, Бора, Планка, Ландау, Ферми, Капицы, Боголюбова и других.

Новые научные исследования, позволившие людям совершить-таки давно планируемые вылеты в космос, позволили выделить конкретные медицинские и биологические обоснования безопасности и влияния внепланетных условий, которые сформулировал Циолковский. В чем была их суть?

  1. Ученым было дано теоретическое обоснование влияния невесомости на организмы млекопитающих.
  2. Он смоделировал несколько вариантов создания условий космоса в лаборатории.
  3. Предложил варианты получения космонавтами пищи и воды при помощи растений и круговорота веществ.

Таким образом, именно Циолковским были заложены все основные постулаты космонавтики, которые не потеряли своей актуальности и сегодня.

Невесомость

Современные биологические исследования в области изучения влияния динамических факторов на организм человека в условиях космоса позволяют по максимуму избавлять космонавтов от негативного влияния этих самых факторов.

Выделяют три главные динамические характеристики:

  • вибрация;
  • ускорение;
  • невесомость.

Самой необычной и важной по действию на организм человека является именно невесомость. Это состояние, при котором исчезает сила гравитации и она не заменяется другими инерционными воздействиями. При этом человек полностью теряет способность контролировать положение тела в пространстве. Такое состояние начинается уже в нижних слоях космоса и сохраняется во всем его пространстве.

Медико-биологические исследования показали, что в состоянии невесомости в организме человека происходят следующие изменения:

  1. Учащается сердцебиение.
  2. Расслабляются мышцы (уходит тонус).
  3. Снижается работоспособность.
  4. Возможны пространственные галлюцинации.

Человек в невесомости способен находиться до 86 дней без вреда для здоровья. Это было доказано опытным путем и подтверждено с медицинской точки зрения. Однако одной из задач космической биологии и медицины на сегодня является разработка комплекса мер по предотвращению влияния невесомости на организм человека вообще, устранению утомляемости, повышению и закреплению нормальной работоспособности.

Существует ряд условий, которые соблюдают космонавты для преодоления невесомости и сохранения контроля над телом:


Для того чтобы добиться хороших результатов в преодолении невесомости, космонавты проходят тщательную подготовку на Земле. Но, к сожалению, пока современные не позволяют создать в лаборатории подобные условия. На нашей планете преодолеть силу тяжести не представляется возможным. Это также одна из задач на будущее для космической и медицинской биологии.

Перегрузки в космосе (ускорения)

Еще одним немаловажным фактором, воздействующим на организм человека, находящегося в космосе, являются ускорения, или перегрузки. Суть этих факторов сводится к неравномерному перераспределению нагрузки на тело при сильных скоростных движениях в пространстве. Выделяют два основных типа ускорения:

  • кратковременное;
  • длительное.

Как показывают медико-биологические исследования, и то и другое ускорение имеет очень важное значение в оказании влияния на физиологическое состояние организма космонавта.

Так, например, при действии кратковременных ускорений (они длятся менее 1 секунды) могут произойти необратимые изменения в организме на молекулярном уровне. Также, если органы не тренированы, достаточно слабы, есть риск разрыва их оболочек. Такие воздействия могут осуществляться при отделении капсулы с космонавтом в космосе, при катапультировании его или при посадках корабля на орбитах.

Поэтому очень важно, чтобы космонавты прошли тщательное медицинское обследование и определенную физическую подготовку перед полетом в космос.

Длительно действующее ускорение возникает при запуске и посадке ракеты, а также во время полета в некоторых пространственных местах космоса. Действие таких ускорений на организм по данным, которые предоставляют научные медицинские исследования, следующее:

  • учащается сердцебиение и пульс;
  • учащается дыхание;
  • наблюдается возникновение тошноты и слабости, бледность кожи;
  • страдает зрение, перед глазами появляется красная или черная пленка;
  • возможно ощущение боли в суставах, конечностях;
  • тонус мышечной ткани падает;
  • нервно-гуморальная регуляция меняется;
  • становится иным газообмен в легких и в организме в целом;
  • возможно появление потливости.

Перегрузки и невесомость заставляют ученых-медиков придумывать различные способы. позволяющие приспособить, натренировать космонавтов, чтобы они могли выдерживать действие этих факторов без последствий для здоровья и без потери работоспособности.

Один из самых эффективных способов тренировки космонавтов на ускорения - это аппарат центрифуга. Именно в нем можно пронаблюдать все изменения, которые происходят в организме при действии перегрузок. Также он позволяет натренироваться и приспособиться к влиянию этого фактора.

Полет в космос и медицина

Полеты в космос, безусловно, оказывают очень большое влияние на состояние здоровья людей, особенно нетренированных или имеющих хронические заболевания. Поэтому важным аспектом являются медицинские исследования всех тонкостей полета, всех реакций организма на самые разнообразные и невероятные воздействия внепланетных сил.

Полет в невесомости заставляет современную медицину и биологию придумывать и формулировать (вместе с тем и осуществлять, конечно) комплекс мер по обеспечению космонавтам нормального питания, отдыха, снабжения кислородом, сохранения работоспособности и так далее.

Кроме того, медицина призвана обеспечить космонавтам достойную помощь в случае непредвиденных, аварийных ситуаций, а также защиту от воздействий неизвестных сил других планет и пространств. Это достаточно сложно, требует много времени и сил, большой теоретической базы, использования только новейшего современного оборудования и препаратов.

Кроме того, медицина наравне с физикой и биологией имеет своей задачей защитить космонавтов от физических факторов условий космоса, таких как:

  • температура;
  • радиация;
  • давление;
  • метеориты.

Поэтому исследование всех этих факторов и особенностей имеет очень важное значение.

в биологии

Космическая биология, как и любая другая биологическая наука, обладает определенным набором методов, позволяющих проводить исследования, накапливать теоретический материал и подтверждать его практическими выводами. Эти методы с течением времени не остаются неизменными, подвергаются обновлениям и модернизации в соответствии с текущим временем. Однако исторически сложившиеся методы биологии все равно остаются актуальными и по сей день. К ним относятся:

  1. Наблюдение.
  2. Эксперимент.
  3. Исторический анализ.
  4. Описание.
  5. Сравнение.

Эти методы биологических исследований базовые, актуальные в любые времена. Но существует ряд других, которые возникли с развитием науки и техники, электронной физики и молекулярной биологии. Именно они называются современными и играют наибольшую роль в изучении всех биолого-химических, медицинских и физиологических процессах.

Современные методы

  1. Методы генной инженерии и биоинформатики. Сюда относится агробактериальная и баллистическая трансформация, ПЦР (полимеразные цепные реакции). Роль биологических исследований такого плана велика, поскольку именно они позволяют найти варианты решения проблемы питания и насыщения кислородом и кабин для комфортного состояния космонавтов.
  2. Методы белковой химии и гистохимии . Позволяют управлять белками и ферментами в живых системах.
  3. Использование флуоресцентной микроскопии , сверхразрешающей микроскопии.
  4. Использование молекулярной биологии и биохимии и их методов исследования.
  5. Биотелеметрия - метод, который является результатом сочетания работы инженеров и медиков на биологической основе. Он позволяет контролировать все физиологически важные функции работы организма на расстоянии при помощи радиоканалов связи тела человека и компьютером-регистратором. Космическая биология использует этот метод как основной для отслеживания воздействий условий космоса на организмы космонавтов.
  6. Биологическая индикация межпланетного пространства . Очень важный метод космической биологии, позволяющий оценивать межпланетные состояния среды, получать сведения о характеристиках разных планет. Основу здесь составляет применение животных со встроенными датчиками. Именно подопытные животные (мыши, собаки, обезьяны) добывают информацию с орбит, которая используется земными учеными для анализа и выводов.

Современные методы биологических исследований позволяют решать передовые задачи не только космической биологии, но и общечеловеческие.

Проблемы космической биологии

Все перечисленные методы медико-биологических исследований, к сожалению, не смогли пока решить все проблемы космической биологии. Существует ряд злободневных вопросов, которые остаются насущными и по сей день. Рассмотрим основные проблемы, с которыми сталкивается космическая медицина и биология.

  1. Подбор подготовленного персонала для полета в космос, состояние здоровья которого смогло бы удовлетворять всем требованиям медиков (в том числе позволило бы космонавтам выдерживать жесткую подготовку и тренировки для полетов).
  2. Достойный уровень подготовки и снабжения всем необходимым рабочих космических экипажей.
  3. Обеспечение безопасности по всем параметрам (в том числе и от неизведанных или инородных факторов воздействия с других планет) рабочим кораблям и авиаконструкциям.
  4. Психофизиологическая реабилитация космонавтов при возвращении на Землю.
  5. Разработка способов защиты космонавтов и от
  6. Обеспечение нормальных жизненных условий в кабинах при полетах в космос.
  7. Разработка и применение модернизированных компьютерных технологий в космической медицине.
  8. Внедрение космической телемедицины и биотехнологии. Использование методов этих наук.
  9. Решение медицинских и биологических проблем для комфортных полетов космонавтов на Марс и другие планеты.
  10. Синтез фармакологических средств, которые позволят решить проблему оснащенности кислородом в космосе.

Развитые, усовершенствованные и комплексные в применении методы медико-биологических исследований обязательно позволят решить все поставленные задачи и существующие проблемы. Однако когда это будет - вопрос сложный и довольно непредсказуемый.

Следует отметить, что решением всех этих вопросов занимаются не только ученые России, но и ученый совет всех стран мира. И это большой плюс. Ведь совместные исследования и поиски дадут несоизмеримо больший и быстрый положительный результат. Тесное мировое сотрудничество в решении космических проблем - залог успеха в освоении внепланетного пространства.

Современные достижения

Таких достижений немало. Ведь ежедневно проводится интенсивная работа, тщательная и кропотливая, которая позволяет находить все новые и новые материалы, делать выводы и формулировать гипотезы.

Одним из главнейших открытий XXI века в космологии стало обнаружение воды на Марсе. Это сразу же дало повод к рождению десятков гипотез о наличии или отсутствии жизни на планете, о возможности переселения землян на Марс и так далее.

Еще одним открытием стало то, что учеными были определены возрастные рамки, в пределах которых человек максимально комфортно и без тяжелых последствий может находиться в космосе. Данный возраст начинается от 45 лет и заканчивается примерно 55-60 годами. Молодые люди, отправляющиеся в космос, чрезвычайно сильно страдают психологически и физиологически по возвращении на Землю, тяжело адаптируются и перестраиваются.

Была обнаружена вода и на Луне (2009 г.). Также на спутнике Земли были найдены ртуть и большое количество серебра.

Методы биологических исследований, а также инженерно-физические показатели позволяют с уверенностью сделать вывод о безвредности (по крайней мере, не большей вредности, чем на Земле) воздействия ионной радиации и облучения в космосе.

Научные исследования доказали, что длительное пребывание в космосе не налагает отпечаток на состояние физического здоровья космонавтов. Однако проблемы остаются в психологическом плане.

Были проведены исследования, доказывающие, что высшие растения по-разному реагируют на нахождение в космических просторах. Семена одних растений при исследовании не проявили никаких генетических изменений. Другие же, наоборот, показали явные деформации на молекулярном уровне.

Опыты, проведенные на клетках и тканях живых организмов (млекопитающих) доказали, что космос не влияет на нормальное состояние и функционирование данных органов.

Различные виды медицинских исследований (томография, МРТ, анализы крови и мочи, кардиограмма, компьютерная томография и так далее) позволили сделать вывод о том, что физиологические, биохимические, морфологические характеристики клеток человека остаются неизменными при пребывании в космосе до 86 дней.

В лабораторных условиях была воссоздана искусственная система, позволяющая максимально приблизиться к состоянию невесомости и таким образом изучить все аспекты влияния этого состояния на организм. Это позволило, в свою очередь, разработать ряд профилактических мер по предотвращению воздействия этого фактора при полете человека в невесомости.

Результатами экзобиологии стали данные, свидетельствующие о наличии органических систем вне биосферы Земли. Пока стало возможным только теоретическое формулирование этих предположений, однако в скором времени ученые планируют добыть и практические доказательства.

Благодаря исследованиям биологов, физиков, медиков, экологов и химиков были выявлены глубокие механизмы воздействия людей на биосферу. Добиться этого стало возможным путем создания искусственных экосистем вне планеты и оказания на них такого же влияния, как и на Земле.

Это не все достижения космической биологии, космологии и медицины на сегодняшний день, а только основные. Существует большой потенциал, реализация которого и есть задача перечисленных наук на будущее.

Жизнь в космосе

По современным представлениям жизнь в космосе может существовать, так как последние открытия подтверждают наличие на некоторых планетах подходящих условий для возникновения и развития жизни. Однако мнения ученых в этом вопросе делятся на две категории:

  • жизни нет нигде, кроме Земли, никогда не было и не будет;
  • жизнь есть в необъятных просторах космического пространства, но люди еще не обнаружили ее.

Какая из гипотез верная - решать каждому лично. Доказательств и опровержений и для одной, и для другой достаточно.

ГОУ лицей № 000

Калининского района г. Санкт-Петербурга

Исследовательская работа

Медико-биологические исследования в космосе

Гуршевым Олегом

Руководитель: учитель биологии

Санкт- Петербург, 2011 г.

Введение 2

Начало медико-биологических исследований в середине XX века. 3

Воздействие космического полёта на организм человека. 6

Экзобиология. 10

Перспективы развития исследований. 14

Список использованных источников. 17

Приложение (презентация, эксперименты) 18

Введение

Космическая биология и медицина - комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией , астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

Актуальность темы довольно большая в наш современный и стремительный XXI век.

Тема «Медико-биологический исследований» меня интересовала последних года два, с тех пор, как я определился в выборе профессии поэтому я решил сделать исследовательскую работу на эту тему.

2011 год является юбилейным – 50 лет со дня первого человеческого полета в космос.

Начало Медико-биологических исследований в середине XX века

Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. - впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. - впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. - первый пилотируемый полет в космос, совершенный. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов (КЛА), а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения.

Лайка (собака-космонавт) 1957 г.

Р езультаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957 г.), вращаемых космических кораблях-спутниках (1960-1961 гг.), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников. Первый в мире биологический спутник с подопытным животным - собакой «Лайкой». Выведен на орбиту 03.11.1957 г. И находился там 5 месяцев. Спутник просуществовал на орбите до 14.04.1958 г. На спутнике имелось два радиопередатчика, телеметрическая система, программное устройство, научные приборы для исследования излучения Солнца и космических лучей, системы регенерации и терморегулирования для поддержания в кабине условий, необходимых для существования животного. Получены первые научные сведения о состоянии живого организма в условиях космического полёта.


Достижения в области космической биологии и медицины во многом предопределили успехи в развитии пилотируемой космонавтики. Наряду с полетом , совершенном 12 апреля 1961 г., следует отметить такие эпохальные события в истории космонавтики, как высадку 21 июля 1969 г. астронавтов Армстронга (N. Armstrong) и Олдрина (Е. Aldrin) на поверхность Луны и многомесячные (до года) полеты экипажей на орбитальных станциях «Салют» и «Мир». Это стало возможным благодаря разработке теоретических основ космической биологии и медицины, методологии проведения медико-биологических исследований в космических полетах, обоснованию и внедрению методов отбора и предполетной подготовки космонавтов, а также разработке средств жизнеобеспечения, медицинского контроля, сохранения здоровья и работоспособности членов экипажа в полете.


Команда Апполо 11 (слева на право): Neil. A. Armstrong, Command Module Pilot Michael Collins, Commander Edwin (Buzz) E. Aldrin.

Воздействие космического полёта на организм человека

В космическом полете на организм человека воздействует комплекс факторов, связанных с динамикой полета (ускорения, вибрация, шум, невесомость), пребыванием в герметичном помещении ограниченного объема (измененная газовая среда, гипокинезия, нервно-эмоциональное напряжение и т. д.), а также факторы космического пространства как среды обитания (космическое излучение, ультрафиолетовое излучение и др.).

В начале и конце космического полета на организм оказывают влияние линейные ускорения . Их величины, градиент нарастания, время и направление действия в период запуска и выведения КЛА на околоземную орбиту зависят от особенностей ракетно-космического комплекса, а в период возвращения на Землю - от баллистических характеристик полета и типа КЛА. Выполнение маневров на орбите также сопровождается воздействием ускорений на организм, однако их величины при полетах современных КЛА незначительны.

Старт космического корабля «Союз ТМА-18» к Международной космической станции с космодрома Байконур

Основные сведения о влиянии ускорений на организм человека и способах защиты от их неблагоприятного действия были получены при исследованиях в области авиационной медицины, космическая биология и медицина лишь дополнили эти сведения. Было установлено, что пребывание в условиях невесомости, особенно длительное время, приводит к снижению устойчивости организма к действию ускорений. В связи с этим за несколько суток до спуска с орбиты космонавты переходят на специальный режим физических тренировок, а непосредственно перед спуском получают водно-солевые добавки для увеличения степени гидратации организма и объема циркулирующей крови. Разработаны специальные кресла - ложементы и противоперегрузочные костюмы, что обеспечивает повышение переносимости ускорений при возвращении космонавтов на Землю.

Среди всех факторов космического полета постоянным и практически невоспроизводимым в лабораторных условиях является невесомость. Влияние ее на организм многообразно. Возникают как неспецифические адаптационные реакции, характерные для хронического стресса, так и разнообразные специфические изменения, обусловленные нарушением взаимодействия сенсорных систем организма, перераспределением крови в верхнюю половину тела, уменьшением динамических и практически полным снятием статических нагрузок на опорно-двигательный аппарат.

МКС лето 2008 г.

Обследования космонавтов и многочисленные эксперименты на животных в полетах биоспутников «Космос» позволили установить, что ведущая роль в возникновении специфических реакций, объединяемых в симптомокомплекс космической формы болезни движения (укачивание), принадлежит вестибулярному аппарату. Это связано с повышением в условиях невесомости возбудимости рецепторов отолитов и полукружных каналов и нарушением взаимодействия вестибулярного анализатора и других сенсорных систем организма. В условиях невесомости у человека и животных обнаруживаются признаки детренированности сердечно-сосудистой системы, увеличение объема крови в сосудах грудной клетки, застойные явления в печени и почках, изменение мозгового кровообращения, уменьшение объема плазмы. В связи с тем, что в условиях невесомости изменяются секреция антидиуретического гормона, альдостерона и функциональное состояние почек, развивается гипогидратация организма. При этом уменьшается содержание внеклеточной жидкости и увеличивается выведение из организма солей кальция, фосфора, азота , натрия, калия и магния. Изменения в опорно-двигательном аппарате возникают преимущественно в тех отделах, которые в обычных условиях жизнедеятельности на Земле несут наибольшую статическую нагрузку, т. е. мышцах спины и нижних конечностей, в костях нижних конечностей и позвонках. Отмечаются снижение их функциональных возможностей, замедление скорости периостального костеобразования, остеопороз губчатого вещества, декальцинация и другие изменения, которые приводят к снижению механической прочности костей.

В начальный период адаптации к невесомости (занимает в среднем около 7 сут.) примерно у каждого второго космонавта возникают головокружение, тошнота, дискоординация движений, нарушение восприятия положения тела в пространстве, ощущение прилива крови к голове, затруднение носового дыхания, ухудшение аппетита. В ряде случаев это приводит к снижению общей работоспособности, что затрудняет выполнение профессиональных обязанностей. Уже на начальном этапе полета появляются начальные признаки изменений в мышцах и костях конечностей.

По мере увеличения продолжительности пребывания в условиях невесомости многие неприятные ощущения исчезают или сглаживаются. Одновременно с этим практически у всех космонавтов, если не принять должных мер, прогрессируют изменения состояния сердечно-сосудистой системы, обмена веществ, мышечной и костной ткани. Для предупреждения неблагоприятных сдвигов используется широкий комплекс профилактических мер и средств: вакуумная емкость, велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы, электромиостимулятор, тренировочные эспандеры, прием солевых добавок и т. д. Это позволяет поддерживать хорошее состояние здоровья и высокий уровень работоспособности членов экипажей в длительных космических полетах.

Неизбежным сопутствующим фактором любого космического полета является гипокинезия - ограничение двигательной активности, которая, несмотря на интенсивные физические тренировки во время полета, приводит в условиях невесомости к общей детренированности и астенизации организма. Многочисленные исследования показали, что длительная гипокинезия, создаваемая пребыванием в постели с наклоном головного конца (-6°), оказывает на организм человека практически такое же влияние, как и длительная невесомость. Этот способ моделирования в лабораторных условиях некоторых физиологических эффектов невесомости широко использовалось в СССР и США. Максимальная длительность такого модельного эксперимента, проведенного в Институте медико-биологических проблем МЗ СССР, составила один год.

Специфической проблемой является исследование воздействия на организм космических излучений. Дозиметрические и радиобиологические эксперименты позволили создать и внедрить в практику систему обеспечения радиационной безопасности космических полетов, которая включает средства дозиметрического контроля и локальной защиты, радиозащитные препараты (радиопротекторы).

Орбитальная станция «МИР»

В задачи космической биологии и медицины входит изучение биологических принципов и методов создания искусственной среды обитания на космических кораблях и станциях. Для этого отбирают живые организмы, перспективные для включения их в качестве звеньев в замкнутую экологическую систему, исследуют продуктивность и устойчивость популяций этих организмов, моделируют экспериментальные единые системы живых и неживых компонентов - биогеоценозы, определяют их функциональные характеристики и возможности практического использования в космических полетах.

Успешно развивается и такое направление космической биологии и медицины, как экзобиология, изучающая наличие, распространение, особенности и эволюцию живой материи во Вселенной. На основании наземных модельных экспериментов и исследований в космосе получены данные, свидетельствующие о теоретической возможности существования органической материи за пределами биосферы . Проводится также программа поиска внеземных цивилизаций путем регистрации и анализа радиосигналов, идущих из космоса.

«Союз ТМА-6»

Экзобиология

Одно из направлений космической биологии; занимается поисками живой материи и органических веществ в космосе и на других планетах. Основная цель экзобиологии состоит в получении прямых или косвенных данных о существовании жизни в космосе. Основанием для этого служат находки предшественников сложных органических молекул (синильной кислоты, формальдегида и др.), которые обнаружены в космическом пространстве спектроскопическими методами (всего найдено до 20 органических соединений). Методы экзобиологии различны и рассчитаны не только на обнаружение инопланетных проявлений жизни, но и на получение некоторых характеристик возможных внеземных организмов. Для предположения о существовании жизни во внеземных условиях, например, на других планетах Солнечной системы, важно выяснить способность выживания организмов при экспериментальном воспроизведении этих условий. Многие микроорганизмы могут существовать при близких к абсолютному нулю и высоких (до 80-95 °С) температуpax; их споры выдерживают глубокий вакуум и длит, высушивание. Они переносят гораздо большие дозы ионизирующего излучения, чем в космическом пространстве. Внеземные организмы, вероятно, должны обладать более высокой приспособляемостью к жизни в среде, содержащей малое количество воды. Анаэробные условия не служат препятствием для развития жизни, поэтому теоретически можно предположить существование в космосе самых различных по свойствам микроорганизмов, которые могли адаптироваться к необычным условиям, вырабатывая различные защитные приспособления. Эксперименты, осуществлённые в СССР и США, не дали доказательств существования жизни на Марсе, нет жизни на Венере и Меркурии, маловероятна она и на планетах-гигантах, а также их спутниках. В Солнечной системе жизнь есть, вероятно, лишь на Земле. Согласно одним представлениям, жизнь вне Земли возможна только на водно-углеродной основе, свойственной нашей планете. Другая точка зрения не исключает и кремниевоаммиачной основы, однако человечество пока не владеет методами обнаружения внеземных форм жизни.

«Викинг»

Программа «Викинг»

Программа «Викинг» - космическая программа НАСА по изучению Марса, в частности, на предмет наличия жизни на этой планете. Программа включала запуск двух идентичных космических аппаратов - «Викинг-1» и «Викинг-2», которые должны были провести исследования на орбите и на поверхности Марса. Программа «Викинг» была кульминацией серии миссий по изучению Марса начало которым положил в 1964 г. «Маринер-4», продолжены «Маринер-6» и «Маринер-7», пролетевших в 1969, и орбитальными миссиями «Маринер-9» в 1971 и 1972 гг. «Викинги» заняли место в истории освоения Марса как первые, благополучно севшие на поверхность, американские космические аппараты. Это была одна из наиболее информативных и успешных миссий на красную планету, хотя ей и не удалось обнаружить жизнь на Марсе.

Оба аппарата были запущены в 1975 г. с мыса Канаверал, штат Флорида. Перед полётом спускаемые аппараты были тщательно стерилизованы для предотвращения заражения Марса земными формами жизни. Время полета заняло немногим меньше года и к Марсу прибыли в 1976 г. Продолжительность миссий «Викинг» планировалась в 90 дней после приземления, но каждый аппарат проработал значительно больше этого срока. Орбитальный аппарат «Викинг-1» проработал до 7 августа 1980 г., спускаемый аппарат - до 11 ноября 1982 г. Орбитальный аппарат «Викинг-2» функционировал до 25 июля 1978 г., спускаемый аппарат - до 11 апреля 1980 г.

Заснеженная пустыня на Марсе. Снимок «Викинга-2»

Программа «БИОН»

Программа «БИОН» включает в себя комплексные исследования на животных и растительных организмах в полетах специализированных спутников (биоспутников) в интересах космической биологии, медицины и биотехнологии. С 1973 по 1996 г. запущено в космос 11 биоспутников.

Ведущее научное учреждение: ГНЦ РФ - Институт медико-биологически проблем РАН (г. Москва)
Конструкторское бюро: ГНП РКЦ «ЦСКБ-Прогресс» (г. Самара)
Длительность полетов: от 5 до 22,5 сут.
Место запуска: космодром Плесецк
Район приземления: Казахстан
Страны-участницы: СССР, Россия, Болгария, Венгрия, Германия, Канада, Китай, Нидерланды, Польша, Румыния, США, Франция, Чехословакия

Исследования на крысах и обезьянах в полетах биоспутников показали, что пребывание в невесомости приводит к существенным, но обратимым функциональным, структурным и метаболическим изменениям в мышцах, костях, миокарде и нейро-сенсорной системе млекопитающих. Описана феноменология и изучен механизм развития этих изменений.

Впервые в полетах биоспутников «БИОН» реализована на практике идея о создании искусственной силы тяжести (ИСТ). В экспериментах на крысах установлено, что ИСТ, создаваемая вращением животных на центрифуге, препятствует развитию неблагоприятных изменений в мышцах, костях и миокарде.

В рамках Федеральной космической программы России на период 2006-2015 гг. в разделе «Космические средства для фундаментальных космических исследований » запланировано продолжение программы «БИОН», запуски космических аппаратов «БИОН-М» намечены на 2010, 2013 и 2016 гг.

«БИОН»

Перспективы развития исследований

Современный этап освоения и изучения космического пространства характеризуется постепенным переходом от длительных орбитальных полетов к межпланетным перелетам, ближайшим из которых видится экспедиция на Марс . В этом случае ситуация меняется коренным образом. Она меняется не только объективно, что связано со значительным увеличением длительности пребывания в космосе, посадкой на другую планету и возвращением на Землю, но и, что очень важно - субъективно, поскольку, покинув уже ставшую привычной земную орбиту, космонавты останутся (в весьма небольшой по численности группе своих коллег) «одинокими» на необъятных просторах Вселенной.

Вместе с тем, возникают принципиально новые проблемы, связанные с резким возрастанием интенсивности космической радиации, необходимостью использования возобновляемых источников кислорода, воды и пищи, и главное, решением психологических и медицинских задач.

Mercury" href="/text/category/mercury/" rel="bookmark">Mercury -Redstone 3» с Аланом Шепардом.

Трудность управления такой системой в ограниченном герметически замкнутом объеме настолько велика, что не приходится надеяться на ее скорое внедрение в практику. По всей вероятности переход на биологическую систему жизнеобеспечения будет происходить постепенно по мере готовности ее отдельных звеньев. На первом этапе развития БСЖО, очевидно, произойдет замена физико-химического метода получения кислорода и утилизации углекислого газа - на биологический. Как известно, основные «поставщики» кислорода - это высшие растения и фотосинтезирующие одноклеточные организмы. Более сложной задачей является пополнение запасов воды и пищи.

Питьевая вода очевидно еще очень долгое время будет иметь «земное происхождение», а техническая (используемая для хозяйственных нужд) уже сейчас восполняется за счет регенерации конденсата атмосферной влаги (КДА), мочи и других источников.

Безусловно, главный компонент будущей замкнутой экологической системы - растения. Исследования на высших растениях и фотосинтезирующих одноклеточных организмах на борту космических аппаратов показали, что условиях космического полета, растения проходят все стадии развития, начиная с прорастания семян до образования первичных органов, цветения, оплодотворения и созревания нового поколения семян. Таким образом, была экспериментально доказана принципиальная возможность осуществления полного цикла развития растений (от семени до семени) в условиях микрогравитации. Результаты космических экспериментов были настолько обнадеживающими, что позволили уже в начале 80-х годов сделать вывод о том, что разработка систем биологического жизнеобеспечения и создание на этой основе экологически замкнутой системы в ограниченном герметическом объеме является не столь уж сложной задачей. Однако с течением времени стало очевидно, что проблема не может быть решена окончательно, по крайней мере, до тех пор, пока не будут определены (расчетным или экспериментальным путем) основные параметры, позволяющие сбалансировать массо - и энергопотоки этой системы.

Для возобновления запасов пищи необходимо также ввести в систему животных. Разумеется, на первых этапах это должны быть «малогабаритные» представители животного мира - моллюски, рыбы, птицы, а позже, возможно кролики и другие млекопитающие.

Таким образом, космонавтам во время межпланетных перелетов необходимо не только научиться выращивать растения, содержать животных и культивировать микроорганизмы, но и разработать надежный, способ управления «космическим ковчегом». А для этого, сначала надо выяснить, как растет и развивается отдельно взятый организм в условиях космического полета, а затем какие требования предъявляет сообществу каждый отдельно взятый элемент замкнутой экологической системы.

Моей основной задачей в исследовательской работе было выяснить, какой интересный и захватывающий пусть прошли космические исследования и какой долгий путь им ещё предстоит пройти!

Если только себе представить, какое разнообразие всего живого есть на нашей планете, то что можно предположить тогда о космосе…

Вселенная настолько большая и неизвестная, что такой вид исследований жизненно важен для нас, живущих на планете Земля. А мы ведь только в самом начале пути и нам предстоит столько всего познать и увидеть!

На протяжении всего того времени, когда я делал эту работу, узнал столько всего интересного, о чем никогда не подозревал, узнал прекрасных исследователей как Карл Саган, узнал о интереснейших космических программах, проведенных в XX веке, как США, так и в СССР, узнал много о современных программах, как «БИОН», и много всего другого.

Исследования продолжаются…

Список использованных источников

Большая Детская Энциклопедия Вселенная: Научно-популярное издание. - Русское энциклопедическое товарищество, 1999. Сайт http://spacembi. *****/ Большая энциклопедия Вселенная. - М. : Изд-во «Астрель», 1999.

4. Энциклопедия Вселенная (“РОСМЭН”)

5. Сайт Wikipedia (картинки)

6.Космос на рубеже тысячелетий. Документы и материалы. М., Международные отношения (2000г.)

Приложение.

“Марссоперенос”

"Маpссоперенос" Отработка одного из звеньев будущей биолого-технической системы жизнеобеспечения космонавтов.

Цель: Получение новых данных о процессах газо-жидкостного обеспечения в корнеобитаемых средах в условиях космического полета

Задачи: Экспериментальное определение коэффициентов капиллярной диффузии влаги и газов

Ожидаемые результаты: Создание установки с корнеобитаемой средой для выращивания растений применительно к условиям микрогравитации

· Комплект "Кювета экспериментальная" для определения характеристик влагопереноса (скорости перемещения фронта пропитки и влагосодержания в отдельных зонах)

    Видеокомплекс LIV для видеосъемки движения фронта пропитки

Цель: Использование новых компьютерных технологий для повышения комфортности пребывания космонавта в условиях длительного космического полета.

Задачи: Активизация конкретных областей мозга, ответственных за зрительные ассоциации космонавта, связанные с родными местами и семьей на Земле с дальнейшим повышением его работоспособности. Анализ состояния космонавта на орбите путем тестирования по специальным методикам.

Используемая научная аппаратура:

Блок EGE2 (индивидуальный жесткий диск космонавта с альбомом фотографий и опросником)

"VEST" Получение данных для разработки мер профилактики неблагоприятного воздействия условий полета на здоровье и работоспособность экипажа МКС.

Цель: Оценка новой интегрированной системы одежды из различных типов материалов для использования в условиях космического полета.

Задачи:

    ношение одежды "VEST", специально разработанной для полета итальянского космонавта Р. Виттори на РС МКС; получение отзыва космонавта в отношении психологического и физиологического самочувствия, то есть комфортности (удобства), носкости одежды; ее эстетики; эффективности теплоустойчивости и физической гигиены на борту станции.

Ожидаемые результаты: Подтверждение функциональности новой интегрированной системы одежды "VEST", в том числе её эргономических показателей в условиях космического полета, что позволит уменьшить массу и объем одежды, планируемой к использованию в долгосрочных космических полетах на МКС.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: