Цикл обогащения вольфрам руды. Обогащение оловянных и вольфрамовых руд и россыпей. значительными материальными и трудовыми затратами при разведке и промышленном освоении новых месторождений

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

На правах рукописи

Артемова Олеся Станиславовна

РАЗРАБОТКА ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ ВОЛЬФРАМА ИЗ ЛЕЖАЛЫХ ХВОСТОВ ДЖИДИНСКОГО ВМК

Специальность 25.00.13- Обогащение полезных ископаемых

диссертации на соискание ученой степени кандидата технических наук

Иркутск 2004

Работа выполнена в Иркутском государственном техническом университете.

Научный руководитель: Доктор технических наук,

профессор К. В. Федотов

Официальные оппоненты: Доктор технических наук,

профессор Ю.П. Морозов

Кандидат технических наук А.Я. Машович

Ведущая организация: Санкт-Петербургский государственный

горный институт (технический университет)

Защита состоится 22 декабря 2004 г. в /О* часов на заседании диссертационного совета Д 212.073.02 Иркутского государственного технического университета по адресу: 664074, Иркутск, ул. Лермонтова, 83, ауд. К-301

Ученый секретарь диссертационного совета профессор

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Сплавы вольфрама находят широкое применение в машиностроении, горном деле, металлообрабатывающей промышленности, в производстве электроосветительной аппаратуры. Главным потребителем вольфрама является металлургия.

Увеличение производства вольфрама возможно за счет вовлечения в переработку сложных по составу, труднообогатимых, бедных по содержанию ценных компонентов и забалансовых руд, путем широкого применения методов гравитационного обогащения.

Вовлечение в переработку лежалых хвостов рудообогащения Джидинского ВМК позволит решить актуальную проблему сырьевой базы, увеличить выпуск востребованного вольфрамового концентрата и улучшить экологическую ситуацию в Забайкальском регионе.

Цель работы: научно обосновать, разработать и апробировать рациональные технологические методы и режимы обогащения лежалых вольфрамсодержащих хвостов Джидинского ВМК.

Идея работы: изучение взаимосвязи структурного, вещественного и фазового составов лежалых хвостов Джидинского ВМК с их технологическими свойствами, позволяющей создать технологию переработки техногенного сырья.

В работе решались следующие задачи: оценить распределение вольфрама по всему пространству основного техногенного образования Джидинского ВМК; изучить вещественный состав лежалых хвостов Джижинского ВМК; исследовать контрастность лежалых хвостов в исходной крупности по содержанию W и 8 (II); исследовать гравитационную обогатимость лежалых хвостов Джидинского ВМК в различной крупности; определить целесообразности использования магнитного обогащения для повышения качества черновых вольфрамсодержащих концентратов; оптимизировать технологическую схему обогащения техногенного сырья ОТО Джидинского ВМК; провести полупромышленные испытания разработанной схемы извлечения W из лежалых хвостов ДВМК.

Методы исследования: спектральный, оптический, оптико-геометрический, химический, минералогический, фазовый, гравитационный и магнитный методы анализа вещественного состава и технологических свойств исходного минерального сырья и продуктов обогащения.

Достоверность и обоснованность научных положений, выводов обеспечены представительным объемом лабораторных исследований; подтверждены удовлетворительной сходимостью расчетных и экспериментально полученных результатов обогащения, соответствием результатов лабораторных и опытно-промышленных испытаний.

НАЦИОНАЛЬНАЯ I БИБЛИОТЕКА I СПек гЛЙЛ!

Научная новизна:

1. Установлено, что техногенное вольфрамсодержащее сырье Джидинского ВМК в любой крупности эффективно обогащается гравитационным методом.

2. С помощью обобщенных кривых гравитационной обогатимости определены предельные технологические показатели переработки лежалых хвостов Джидинского ВМК различной крупности гравитационным методом и выявлены условия получения отвальных хвостов с минимальными потерями вольфрама.

3. Установлены новые закономерности разделительных процессов, определяющие гравитационную обогатимость вольфрамсодержащего техногенного сырья в крупности +0,1 мм.

4. Для лежалых хвостов Джидинского ВМК выявлена надежная и достоверная корреляционная связь межу содержаниями WO3 и S(II).

Практическая значимость: разработана технология обогащения лежалых хвостов Джидинского ВМК, обеспечивающая эффективное извлечение вольфрама, позволяющая получить кондиционный вольфрамовый концентрат.

Апробация работы: основное содержание диссертационной работы и ее отдельные положения докладывались на ежегодных научно-технических конференциях Иркутского государственного технического университета (г.Иркутск, 2001-2004 гг.), всероссийской школе-семинаре молодых ученых «Леоновские чтения - 2004» (г.Иркутск, 2004 г.), научном симпозиуме «Неделя горняка - 2001» (г.Москва, 2001 г.), всероссийской научно-практической конференции «Новые технологии в металлургии, химии, обогащении и экологии» (г.Санкт-Петербург, 2004 г.), Плаксинские чтения - 2004. В полном объеме диссертационная работа представлялась на кафедре Обогащения полезных ископаемых и инженерной экологии в ИрГТУ, 2004 г. и на кафедре Обогащения полезных ископаемых СПГГИ (ТУ), 2004 г.

Публикации. По теме диссертационной работы опубликовано 8 печатных

Структура и объем работы. Диссертационная работа состоит из введения, 3 глав, заключения, 104 библиографических источников и содержит 139 страниц, включая 14 рисунков, 27 таблиц и 3 приложения.

Автор выражает глубокую благодарность научному руководителю д.т.н., проф. К.В. Федотову за профессиональное и доброжелательное руководство; проф. О.Н. Бельковой - за ценные советы и полезные критические замечания, высказанные в процессе обсуждения диссертационной работы; Г.А. Бадениковой - за консультирование по расчету технологической схемы. Автор искренне благодарит сотрудников кафедры за всестороннюю помощь и поддержку, оказанные при подготовке диссертации.

Объективными предпосылками вовлечения в производственный оборот техногенных образований являются:

Неизбежность сохранения природно-ресурсного потенциала. Обеспечивается сокращением добычи первичных минерально-сырьевых ресурсов и снижением объема наносимого окружающей среде ущерба;

Необходимость замены первичных ресурсов вторичными. Обусловлена потребностями производства в материально-сырьевых ресурсах, в том числе тех отраслей, природно-сырьевая база которых практически исчерпана;

Возможность использования техногенных отходов обеспечивается внедрением достижений научно-технического прогресса.

Производство продукции из техногенных месторождений, как правило, в несколько раз дешевле, чем из специально добываемого для этого сырья, и характеризуется быстрой окупаемостью капиталовложений.

Хранилища отходов рудообогащения являются объектами повышенной экологической опасности из-за их негативного воздействия на воздушный бассейн, подземные и поверхностные воды, почвенный покров на обширных территориях.

Платежи за загрязнение представляют собой форму возмещения экономического ущерба от выбросов и сбросов загрязняющих веществ в окружающую природную среду, а также за размещение отходов на территории Российской Федерации.

Джидинское рудное поле относится к высокотемпературному глубинному гидротермальному кварц-вольфрамитовому (или кварц-гюбнеритовому) типу месторождений, играющих важнейшую роль в добыче вольфрама. Главным рудным минералом является вольфрамит, состав которого колеблется от ферберита до побнерита со всеми промежуточными членами ряда. Шеелит - менее распространенный вольфрамат.

Руды с вольфрамитом обогащаются главным образом по гравитационной схеме; применяются обычно гравитационные методы мокрого обогащения на отсадочных машинах, гидроциклонах и концентрационных столах. Для получения кондиционных концентратов применяют магнитную сепарацию.

Руды на фабрике Джидинского ВМК до 1976 г. перерабатывались по двухстадиальной гравитационной схеме, включающей тяжелосредное обогащение в гидроциклонах, двухстадиальную концентрацию узко классифицированных рудных материалов на трехдечных столах типа СК-22, доизмельчение и обогащение промродуктов в отдельном цикле. Шламы обогащались по отдельной гравитационной схеме с использованием отечественных и зарубежных концентрационных шламовых столов.

С 1974 по 1996 гг. складировались хвосты обогащения только вольфрамовых руд. В 1985-86 году руды перерабатывались по гравитационно -флотационной технологической схеме. Поэтому в основное хвостохранилище сбрасывались хвосты гравитационного обогащения и сульфидный продукт флотогравитации. С середины 80х годов ввиду возросшего потока руды, подававшейся с Инкурского рудника, возрос удельный вес отходов крупных

классов, вплоть до 1-3 мм. После остановки Джидинского ГОКа в 1996 г. прудок-отстойник самоликвидировался за счет испарения и фильтрации.

В 2000 г выделено как самостоятельный объект «хвостохранилище аварийного сброса» (ХАС) в связи с достаточно существенным его отличием от основного хвостохранилища по условиям залегания, масштабу запасов, качеству и степени сохранности техногенных песков. Другим побочным хвостохранилищем являются аллювиальные техногенные отложения (АТО), к которым относятся переотложенные хвосты флотации молибденовых руд на участке долины р. Модонкуль.

Базовые нормативы платы за размещение отходов в пределах установленных лимитов по Джидинскому ВМК составляют 90 620 000 руб. Ежегодный экологический ущерб от деградации земли из-за размещения лежалых хвостов рудообогащения оценивается в 20 990 200 руб.

Таким образом, вовлечение в переработку лежалых хвостов рудообогащения Джидинского ВМК позволит: 1) решить проблему сырьевой базы предприятия; 2) увеличить выпуск востребованного "-концентрата и 3) улучшить экологическую ситуацию в Забайкальском регионе.

Вещественный состав и технологические свойства техногенного минерального образования Джидинского ВМК

Проведено геологическое опробование лежалых хвостов Джидинского ВМК. При обследовании побочного хвостохранилища (хвостохранилище аварийного сброса (ХАС)) отобрано 13 проб. На площади месторождения АТО было отобрано 5 проб. Площадь опробования основного хвостохранилища (ОТО) составила 1015 тыс. м2 (101,5 га), отобрано 385 частных проб. Масса отобранных проб - 5 т. Все отобранные пробы проанализированы на содержание "03 и 8 (И).

ОТО, ХАТ и АТО статистически сравнивались по содержанию " 03 с помощью критерия Стьюдента. С доверительной вероятностью 95% установлено: 1) отсутствие значимого статистического различия по содержанию "03 между частными пробами побочных хвостохранилищ; 2) средние результаты опробования ОТО по содержанию "03 в 1999 и 2000 гг. относятся к одной генеральной совокупности; 3) средние результаты опробования основного и побочных хвостохранилищ по содержанию " 03 значимо отличаются друг от друга и минеральное сырье всех хвостохранилищ не может быть переработано по одной и той же технологии.

Предметом нашего исследования является ОТО.

Вещественный состав минерального сырья ОТО Джидинского ВМК установлен по данным анализов рядовых и групповых технологических проб, а также продуктов их переработки. Рядовые пробы анализировались на содержание "03 и 8(11). Групповые пробы использованы для минералогического, химического, фазового и ситового анализов.

По данным спектрального полуколичественного анализа представительной аналитической пробы выявлены основной полезный компонент - " и второстепенные - РЬ, /и, Си, Аи и Содержание "03 в форме шеелита

достаточно стабильно во всех классах крупности различных разностей песков и составляет в среднем 0,042-0,044%. Содержание WO3 в форме гюбнерита неодинаково в различных классах крупности. Высокие содержания WO3 в форме гюбнерита отмечены в частицах крупности +1 мм (от 0,067 до 0,145%) и особенно в классе -0,08+0 мм (от 0,210 до 0,273%). Эта особенность характерна для светлых и темных песков и сохраняется для усредненной пробы.

Результаты спектрального, химического, минералогического и фазового анализов подтверждают, что свойства гюбнерита, как основной минеральной формы \УОз, будут определять технологию обогащения минерального сырья ОТО Джидинского ВМК.

Гранулометрическая характеристика сырья ОТО с распределением вольфрама по классам крупности приведена на рис. 1,2.

Видно, что основная масса материала пробы ОТО (~58%) имеет крупность -1+0,25 мм, по 17% приходится на крупный (-3+1 мм) и мелкий (-0,25+0,1 мм) классы. Доля материала крупностью -0,1 мм составляет около 8%, из которого половина (4,13%) приходится на шламовый класс-0,044+0 мм.

Для вольфрама характерно незначительное колебание (0,04-0,05%) содержания в классах крупности от -3 +1 мм до -0,25+0,1 мм и резкое повышение (до 0,38%) в классе крупности -0,1+0,044 мм. В шламовом классе -0,044+0 мм содержание вольфрама снижается до 0,19%. То есть 25,28% вольфрама сосредоточено в классе -0,1+0,044 мм при выходе данного класса около 4% и 37,58% - в классе -0,1+0 мм при выходе данного класса 8,37%.

В результате анализа данных по вкрапленности гюбнерита и шеелита в минеральном сырье ОТО исходной крупности и измельченном до - 0,5мм (см. табл. 1).

Таблица 1 - Распределение зерен и сростков побнерита и шеелита по классам крупности исходного и измельченного минерального сырья _

Классы крупности, мм Распределение, %

Гюбнерит Шеелит

Своб. зерна | Сростки Своб. зерна | Сростки

Материал ОТО в исходной крупности (- 5 +0 мм)

3+1 36,1 63,9 37,2 62,8

1+0,5 53,6 46,4 56,8 43,2

0,5+0,25 79,2 20,8 79,2 20,8

0,25+0,125 88,1 11,9 90,1 9,9

0,125+0,063 93,6 6,4 93,0 7,0

0,063+0 96,0 4,0 97,0 3,0

Сумма 62,8 37,2 64,5 35,5

Материал ОТО, измельченный до - 0,5 +0 мм

0,5+0,25 71,5 28,5 67,1 32,9

0,25+0,125 75,3 24,7 77,9 22,1

0,125+0,063 89,8 10,2 86,1 13,9

0,063+0 90,4 9,6 99,3 6,7

Сумма 80,1 19,9 78,5 21,5

Сделан вывод о необходимости классификации обесшламленного минерального сырья ОТО по крупности 0,1 мм и раздельного обогащения получаемых классов. Из крупного класса следует: 1) выделить свободные зерна в черновой концентрат, 2) хвосты, содержащие сростки, подвергнуть доизмельчению, обесшламливанию, объединению с обесшламленным классом -0,1+0 мм исходного минерального сырья и гравитационному обогащению для извлечения тонких зерен шеелита и побнерита в промпродукт.

Для оценки контрастности минерального сырья ОТО использована технологическая проба, являющаяся совокупностью 385 частных проб. Результаты фракционирования частных проб по содержанию WO3 и сульфидной серы приведены на рис.3,4.

0 Ы ОС 0.2 »л М ол О 2 СС * _ " 8

С(кк|Юпытетр«окнсмм»фр**м.% Содержатся гульфкшоЯ

Рис. 3 Кривые условной контрастности исходного Рис. 4 Кривые условной контрастности исходного

минерального сырья ОТО по содержанию Ч/О} минерального сырья ОТО по содержанию 8 (II)

Установлено, что показатели контрастности по содержанию WO3 и S (II) равны 0,44 и 0,48 соответственно. С учетом классификации руд по контрастности исследуемое минеральное сырье по содержанию WO3 и S (II) относится к категории неконтрастных руд. Радиометрическое обогащение не

пригодно для извлечения вольфрама из мелкоразмерных лежалых хвостов Джидинского ВМК.

Результаты корреляционного анализа, с помощью которого выявлена математическая зависимость между концентрациями \\Юз и 8 (II) (Стоз=0»0232+0,038С5(и)И г=0,827; корреляционная связь является достоверной и надежной), подтверждают выводы о нецелесообразности использования радиометрической сепарации.

Результаты анализа по разделению минеральных зерен ОТО в тяжелых жидкостях, приготовленных на основе селенового бромида, использованы для расчета и построения кривых гравитационной обогатимости (рис. 5), из вида которых, особенно кривой следует, что для минерального сырья ОТО Джидинского ВМК в любой крупности пригоден гравитационный метод обогащения.

Учитывая недостатки в использовании кривых гравитационной обогатимости, особенно кривой для определения содержания металла во всплывших фракциях с заданным выходом или извлечением строили обобщенные кривые гравитационной обогатимости (рис 6), результаты анализа которых даны в табл. 2.

Таблица 2 - Прогнозные технологические показатели обогащения разных классов крупности лежалых хвостов Джидинского ВМК гравитационным методом_

г Класс крупности, мм Максимальные потери \У с хвостами, % Выход хвостов, % Содержание XV, %

в хвостах в конц-те

3+1 0,0400 25 82,5 0,207 0,1

3+0,5 0,0400 25 84 0,19 0,18

3+0,25 0,0440 25 90 0,15 0,28

3+0,1 0,0416 25 84,5 0,07 0,175

3+0,044 0,0483 25 87 0,064 0,27

1+0,5 0,04 25 84,5 0,16 0,2

1+0,044 0,0500 25 87 0,038 0,29

0,5+0,25 0,05 25 92,5 0,04 0,45

0,5+0,044 0,0552 25 88 0,025 0,365

0,25+0,1 0,03 25 79 0,0108 0,1

0,25+0,044 0,0633 15 78 0,02 0,3

0,1+0,044 0,193 7 82,5 0,018 1,017

По гравитационной обогатимости классы -0,25+0,044 и -0,1+0,044 мм существенно отличается от материала иной крупности. Лучшие технологические показатели гравитационного обогащения минерального сырья прогнозируются для класса крупности -0,1+0,044 мм: ^ |*0М4=82,5%, =0,018% и е* =7%.

Результаты электромагнитного фракционирования тяжелых фракций (ТФ), гравитационного анализа с помощью универсального магнита Сочнева С-5 и магнитной сепарации ТФ показали, что общий выход сильномагнитной и немагнитной фракций составляет 21,47% и потери " в них равны 4,5%. Минимальные потери " с немагнитной фракцией и максимальное содержание " в объединенном слабомагнитном продукте прогнозируются при условии, если питание сепарации в сильном магнитном поле имеет крупность -0,1+0 мм.

Рис. 5 Кривые гравитационной обогатимости лежалых хвостов Джидинского ВМК

е) класс -0,1+0,044 мм

Рис. 6 Обобщенные кривые гравитационной обогатимости различных классов крупности минерального сырья ОТО

Разработка технологической схемы обогащения лежалых хвостов рудообогащения Джидинского ВМ К

Результаты технологического опробования различных способов гравитационного обогащения лежалых хвостов ОТО Джидинского ВМК представлены в табл. 3.

Таблица 3 - Результаты тестирования гравитационных аппаратов

Получены сопоставимые технологические показатели по извлечению WO3 в черновой концентрат при обогащении неклассифицированных лежалых хвостов как при винтовой сепарации, так и при центробежной сепарации. Минимальные потери WO3 с хвостами выявлены при обогащении в центробежном концентраторе класса -0,1+0 мм.

В табл. 4 дан гранулометрический состав чернового W-концентрата крупностью -0,1+0 мм.

Таблица 4 - Гранулометрический состав чернового W-концентрата

Класс крупности, мм Выход классов, % Содержание Распределение АУОз

Абсолютное Относительное, %

1+0,071 13,97 0,11 1,5345 2,046

0,071+0,044 33,64 0,13 4,332 5,831

0,044+0,020 29,26 2,14 62,6164 83,488

0,020+0 23,13 0,28 6,4764 8,635

Итого 100,00 0,75 75,0005 100,0

В концентрате основное количество WO3 находится в классе -0,044+0,020 мм.

Согласно данным минералогического анализа по сравнению с исходным материалом в концентрате больше массовая доля побнерита (1,7%) и рудных сульфидных минералов, особенно пирита (16,33%). Содержание породообразующих - 76,9%. Качество чернового W-концентрата может быть повышено последовательным применением магнитной и центробежной сепарации.

Результатами тестирования гравитационных аппаратов для извлечения >УОз из хвостов первичного гравитационного обогащения минерального сырья ОТО в крупности +0,1 мм (табл. 5) доказано, что самым эффективным аппаратом является концентратор ККЕЬ80№

Таблица 5 - Результаты тестирования гравитационных аппаратов

Продукт Г,% ßwo>, % rßwo> ст">, %

винтовой сепаратор

Концентрат 19,25 0,12 2,3345 29,55

Хвосты 80.75 0,07 5,5656 70,45

Исходная проба 100,00 0,079 7,9001 100,00

винговой шлюз

Концентрат 15,75 0,17 2,6750 33,90

Хвосты 84,25 0,06 5,2880 66,10

Исходная проба 100,00 0,08 7,9630 100,00

концентрационный стол

Концентрат 23,73 0,15 3,56 44,50

Хвосты 76,27 0,06 4,44 55,50

Исходная проба 100,00 0,08 8,00 100,00

центробежный концентратор KC-MD3

Концентрат 39,25 0,175 6,885 85,00

Хвосты 60,75 0,020 1,215 15,00

Исходная проба 100,00 0,081 8,100 100,00

При оптимизации технологической схемы обогащения минерального сырья ОТО Джидинского ВМК учитывали: 1) технологические схемы переработки тонковкрапленных вольфрамитовых руд отечественных и зарубежных обогатительных фабрик; 2) технические характеристики современного применяемого оборудования и его габариты; 3) возможность использования одного и того же оборудования для одновременной реализации двух операций, например, разделения минералов по крупности и обезвоживания; 4) экономические затраты на аппаратурное оформление технологической схемы; 5) результаты, изложенные в главе 2; 6) требования ГОСТов, предъявляемые к качеству вольфрамовых концентратов.

При полупромышленных испытаниях разработанной технологии (рис 7-8 и табл. 6) за 24 часа переработано 15 т исходного минерального сырья.

Результаты спектрального анализа представительной пробы полученного концентрата подтверждают, что W-концентрат III магнитной сепарации является кондиционным и соответствует марке КВГ (Т) ГОСТа 213-73.

Рис.8 Результаты технологического опробования схемы доводки черновых концентратов и промпродукта из лежалых хвостов Джидинского ВМК

Таблица 6 - Результаты опробования технологической схемы

Продукт у

Кондиционный концентрат 0,14 62,700 8,778 49,875

Хвосты отвальные 99,86 0,088 8,822 50,125

Исходная руда 100,00 0,176 17,600 100,000

ЗАКЛЮЧЕНИЕ

В работе дано решение актуальной научно-производственной задачи: научно обоснованы, разработаны и в определенном объеме реализованы эффективные технологические методы извлечения вольфрама из лежалых хвостов рудообогащения Джидинского ВМК.

Основные результаты выполненных исследований, разработок и их практической реализации заключаются в следующем

Основной полезный компонент - вольфрам, по содержанию которого лежалые хвосты являются неконтрастной рудой, представлен преимущественно гюбнеритом, определяющим технологические свойства техногенного сырья. Вольфрам неравномерно распределен по классам крупности и основное его количество сосредоточено в крупности

Доказано, что единственным эффективным методом обогащения W-содержащих лежалых хвостов Джидинского ВМК является гравитационный. На основе анализа обобщенных кривых гравитационной обогатимости лежалых W-содержащих хвостов установлено, что отвальные хвосты с минимальными потерями вольфрама являются отличительным признаком обогащения техногенного сырья в крупности -0,1+Омм. Установлены новые закономерности разделительных процессов, определяющие технологические показатели гравитационного обогащения лежалых хвостов Джидинского ВМК в крупности +0,1мм.

Доказано, что из гравитационных аппаратов, применяемых в горной отрасли при обогащении W-содержащих руд, для максимального извлечения вольфрама из техногенного сырья Джидинского ВМК в черновые W-концентраты пригодны винтовой сепаратор и центробежный концентратор ККЕЬ80№ Эффективность использования концентратора ККЕЬ80К подтверждена также для доизвлечения вольфрама из хвостов первичного обогащения техногенного W-содержащего сырья в крупности - 0,1мм.

3. Оптимизированная технологическая схема извлечения вольфрама из лежалых хвостов рудообогащения Джидинского ВМК позволила получить кондиционный W-концентрат, решить проблему истощения минеральных ресурсов Джидинского ВМК и снизить негативное воздействие производственной деятельности предприятия на окружающую среду.

Предпочтительное использование гравитационного оборудования. При полупромышленных испытаниях разработанной технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК получен кондиционный "-концентрат с содержанием "03 62,7% при извлечении 49,9%. Срок окупаемости обогатительной установки по переработке лежалых хвостов Джидинского ВМК с целью извлечения вольфрама составил 0,55 года.

Основные положения диссертационной работы опубликованы в следующих работах:

1. Федотов К.В., Артемова О.С., Полинскина И.В. Оценка возможности переработки лежалых хвостов Джидинского ВМК, Обогащение руд: Сб. научн. трудов. - Иркутск: Изд-во ИрГТУ, 2002. - 204 с, С. 74-78.

2. Федотов К.В., Сенченко А.Е., Артемова О.С., Полинкина И.В. Применение центробежного сепаратора с непрерывной разгрузкой концентрата для извлечения вольфрама и золота из хвостов Джидинского ВМК, Экологические проблемы и новые технологии комплексной переработки минерального сырья: Материалы Международного совещания «Плаксинские чтения - 2002». - М.: П99, Изд-во ПКЦ «Альтекс», 2002 - 130 с, С.96-97.

3. Зелинская Е.В., Артемова О.С. Возможность регулирования селективности действия собирателя при флотации вольфрамсодержащих руд из лежалых хвостов, Направленное изменение физико-химических свойств минералов в процессах обогащения полезных ископаемых (Плаксинские чтения), материалы международного совещания. - М.: Альтекс, 2003. -145 с, С.67-68.

4. Федотов К.В., Артемова О.С. Проблемы переработки лежалых вольфрамсодержащих продуктов Современные методы переработки минерального сырья: Материалы конференции. Иркутск: Ирк. Гос. Тех. Ун-т, 2004г. - 86 с.

5. Артемова О. С, Гайдук А. А. Извлечение вольфрама из лежалых хвостов Джидинского вольфраммолибденового комбината. Перспективы развития технологии, экологии и автоматизации химических, пищевых и металлургических производств: Материалы научно-практической конференции. - Иркутск: Изд-во ИрГТУ. - 2004 г. - 100 с.

6. Артемова О.С. Оценка неравномерности распределения вольфрама в Джидинском хвостохранилище. Современные методы оценки технологических свойств минерального сырья благородных металлов и алмазов и прогрессивные технологии их переработки (Плаксинские чтения): Материалы международного совещания. Иркутск, 13-17 сентября 2004 г. - М.: Альтекс,2004. - 232 с.

7. Артемова О.С, Федотов К.В., Белькова О.Н. Перспективы использования техногенного месторождения Джидинского ВМК. Всероссийская научно-практическая конференция «Новые технологии в металлургии, химии, обогащении и экологии» г. Санкт-Петербург, 2004 г.

Подписано в печать 12. Н 2004. Формат 60x84 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. Уч.-изд.л. 125. Тираж 400 экз. Зак.460.

ИД №06506 от 26.12.2001 Иркутский государственный технический университет 664074, Иркутск, ул. Лермонтова, 83

РНБ Русский фонд

1 .ЗНАЧИМОСТЬ ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ

1.1. Минеральные ресурсы рудной отрасли в РФ и вольфрамовой подотрасли

1.2. Техногенные минеральные образования. Классификация. Необходимость использования

1.3. Техногенное минеральное образование Джидинского ВМК

1.4. Цели и задачи исследования. Методы исследования. Положения, выносимые на защиту

2. ИССЛЕДОВАНИЕ ВЕЩЕСТВЕННОГО СОСТАВА И ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ ЛЕЖАЛЫХ ХВОСТОВ ДЖИДИНСКОГО ВМК

2.1. Геологическое опробование и оценка распределения вольфрама

2.2. Вещественный состав минерального сырья

2.3. Технологические свойства минерального сырья

2.3.1. Гранулометрический состав

2.3.2. Исследование возможности радиометрической сепарации минерального сырья в исходной крупности

2.3.3. Гравитационный анализ

2.3.4. Магнитный анализ

3. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ИЗВЛЕЧЕНИЯ ВОЛЬФРАМА ИЗ ЛЕЖАЛЫХ ХВОСТОВ ДЖИДИНСКОГО ВМК

3.1. Технологическое тестирование разных гравитационных аппаратов при обогащении лежалых хвостов различной крупности

3.2. Оптимизация схемы переработки ОТО

3.3. Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки

Введение Диссертация по наукам о земле, на тему "Разработка технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК"

Науки об обогащении полезных ископаемых, прежде всего, направлены на разработку теоретических основ процессов разделения минералов и создание обогатительных аппаратов, на раскрытие взаимосвязи закономерностей распределения компонентов и условий разделения в продуктах обогащения с целью повышения селективности и скорости разделения, его эффективности и экономичности, экологической безопасности.

Несмотря на значительные запасы полезных ископаемых и сокращение в последние годы ресурсопотребления, истощение минеральных ресурсов является одной из важнейших проблем в России. Слабое использование ресурсосберегающих технологий способствует большим потерям полезных ископаемых при добыче и обогащении сырья .

Анализ развития техники и технологии обогащения полезных ископаемых за последние 10-15 лет указывает на значительные достижения отечественной фундаментальной науки в области познания основных явлений и закономерностей при разделении минеральных комплексов, что позволяет создать высокоэффективные процессы и технологии для первичной переработки руд сложного вещественного состава и, как следствие, обеспечить металлургическую промышленность необходимой номенклатурой и качеством концентратов. В то же время в нашей стране в сравнении с развитыми зарубежными государствами до сих пор наблюдается значительное отставание в развитии машиностроительной базы для производства основного и вспомогательного обогатительного оборудования, в его качестве, металлоемкости, энергоемкости и износостойкости .

Кроме того, в силу ведомственной принадлежности горно-обогатительных предприятий комплексное сырье перерабатывалось только с учетом необходимой потребности отрасли в конкретном металле, что приводило к нерациональному использованию природных минеральных ресурсов и увеличению затрат на складирование отходов . В настоящее время накоплено более 12 млрд.т отходов, содержание ценных компонентов в которых в ряде случаев превышает их содержание в природных месторождениях .

Помимо вышеперечисленных негативных тенденций, начиная с 90-х годов резко обострилась экологическая обстановка на горно-обогатительных предприятиях (в ряде регионов угрожая существованию не только биоты, но и человека), наметилось прогрессирующее снижение добычи руд цветных и черных металлов, горно-химического сырья, ухудшение качества перерабатываемых руд и, как следствие, вовлечение в переработку труднообогатимых руд сложного вещественного состава, характеризующихся низким содержанием ценных компонентов, тонкой вкрапленностью и близкими технологическими свойствами минералов. Так, за последние 20 лет содержание цветных металлов в рудах снизилось в 1,3-1,5 раза, железа в 1,25 раза, золота в 1,2 раза, доля труднообогатимых руд и угля возросла с 15% до 40% от общей массы сырья, поступающего на обогащение .

Воздействие человека на природную среду в процессе хозяйственной деятельности ныне приобретает глобальный характер. По масштабам извлекаемых и перемещаемых пород, преобразования рельефа, воздействия на перераспределение и динамику поверхностных и подземных вод, активизации геохимического переноса и т.д. эта деятельность сопоставима с геологическими процессами .

Беспрецедентный масштаб извлекаемых минеральных ресурсов ведет к их быстрому истощению, накоплению на поверхности Земли, в атмосфере и гидросфере большого числа отходов, постепенной деградации природных ландшафтов, сокращению биоразнообразия, снижению природного потенциала территорий и их жизнеобеспечивающих функций .

Хранилища отходов рудообогащения являются объектами повышенной экологической опасности из-за их негативного воздействия на воздушный бассейн, подземные и поверхностные воды, почвенный покров на обширных территориях . Наряду с этим хвостохранилища - малоизученные техногенные месторождения, использование которых позволит получить дополнительные источники рудно-минерального сырья при существенном уменьшении масштабов нарушения геологической среды в регионе .

Производство продукции из техногенных месторождений, как правило, в несколько раз дешевле, чем из специально добываемого для этого сырья, и характеризуется быстрой окупаемостью капиталовложений. Однако сложный химический, минералогический и гранулометрический состав хвостохранилищ, а также широкий набор содержащихся в них полезных ископаемых (от главных и попутных компонентов до простейших строительных материалов) затрудняют расчет суммарного экономического эффекта от их переработки и определяют индивидуальный подход к оценке каждого хвостохранилища .

Следовательно, в настоящий момент выявился ряд неразрешимых противоречий между изменением характера минерально-сырьевой базы, т.е. необходимостью вовлечения в переработку труднообогатимых руд и техногенных месторождений, экологически обостренной ситуацией в горнопромышленных регионах и состоянием техники, технологии и организации первичной переработки минерального сырья .

Вопросы использования отходов обогащения полиметаллических, золотосодержащих и редких металлов имеют как экономический, так и экологические аспекты .

В достижении современного уровня развития теории и практики переработки хвостов обогащения руд цветных, редких и благородных металлов большой вклад внесли В.А. Чантурия, В.З. Козин, В.М. Авдохин, С.Б. Леонов, JI.A. Барский, А.А. Абрамов, В.И. Кармазин, С.И. Митрофанов и др.

Важной составной частью общей стратегии рудной отрасли, в т.ч. вольфрамовой, является рост использования отходов рудообогащения, как дополнительных источников рудно-минерального сырья, при существенном уменьшении масштабов нарушения геологической среды в регионе и негативного воздействия на все компоненты окружающей среды .

В области использования отходов рудообогащения важнейшим является детальное минералого-технологическое исследование каждого конкретного, индивидуального техногенного месторождения, результаты которого позволят разработать эффективную и экологически безопасную технологию промышленного освоения дополнительного источника рудно-минерального сырья .

Рассматриваемые в диссертационной работе проблемы решались в соответствии с научным направлением кафедры Обогащения полезных ископаемых и инженерной экологии Иркутского государственного технического университета по теме «Фундаментальные и технологические исследования в области переработки минерального и техногенного сырья с целью комплексного его использования, с учетом экологических проблем в сложных индустриальных системах» и х/д темой № 118 «Исследование на обогатимость лежалых хвостов Джидинского ВМК».

Цель работы - научно обосновать, разработать и апробировать рациональные технологические методы обогащения лежалых вольфрамсодержащих хвостов Джидинского ВМК.

В работе решались следующие задачи:

Оценить распределение вольфрама по всему пространству основного техногенного образования Джидинского ВМК;

Изучить вещественный состав лежалых хвостов Джижинского ВМК;

Исследовать контрастность лежалых хвостов в исходной крупности по содержанию W и S (II); исследовать гравитационную обогатимость лежалых хвостов Джидинского ВМК в различной крупности;

Определить целесообразности использования магнитного обогащения для повышения качества черновых вольфрамсодержащих концентратов;

Оптимизировать технологическую схему обогащения техногенного сырья ОТО Джидинского ВМК; провести полупромышленные испытания разработанной схемы извлечения W из лежалых хвостов ДВМК;

Разработать схему цепи аппаратов для промышленной переработки лежалых хвостов Джидинского ВМК.

Для выполнения исследований использовалась представительная технологическая проба лежалых хвостов Джидинского ВМК.

При решении сформулированных задач использовались следующие методы исследования: спектральный, оптический, химический, минералогический, фазовый, гравитационный и магнитный методы анализа вещественного состава и технологических свойств исходного минерального сырья и продуктов обогащения.

На защиту выносятся следующие основные научные положения: Установлены закономерности распределения исходного техногенного минерального сырья и вольфрама по классам крупности. Доказана необходимость первичной (предварительной) классификации по крупности 3 мм.

Установлены количественные характеристики лежалых хвостов рудообогащения руд Джидинского ВМК по содержанию WO3 и сульфидной серы. Доказано, что исходное минеральное сырье относится к категории неконтрастных руд. Выявлена достоверная и надежная корреляционная связь между содержаниями WO3 и S (II).

Установлены количественные закономерности гравитационной обогатимости лежалых хвостов Джидинского ВМК. Доказано, что для исходного материала любой крупности эффективным методом извлечения W является гравитационное обогащение. Определены прогнозные технологические показатели гравитационного обогащения исходного минерального сырья в различной крупности.

Установлены количественные закономерности распределения лежалых хвостов рудообогащения Джидинского ВМК по фракциям различной удельной магнитной восприимчивости. Доказана эффективность последовательного применения магнитной и центробежной сепарации для повышения качества черновых W-содержащих продуктов. Оптимизированы технологические режимы магнитной сепарации.

Заключение Диссертация по теме "Обогащение полезных ископаемых", Артемова, Олеся Станиславовна

Основные результаты выполненных исследований, разработок и их практической реализации заключаются в следующем:

1. Выполнен анализ современной ситуации в РФ с минеральными ресурсами рудной отрасли, в частности - вольфрамовой. На примере Джидинского ВМК показано, что проблема вовлечения в переработку лежалых хвостов рудообогащения является актуальной, имеющей технологическое, экономическое и экологическое значение.

2. Установлены вещественный состав и технологические свойства основного W-содержащего техногенного образования Джидинского ВМК.

Основной полезный компонент - вольфрам, по содержанию которого лежалые хвосты являются неконтрастной рудой, представлен преимущественно гюбнеритом, определяющим технологические свойства техногенного сырья. Вольфрам неравномерно распределен по классам крупности и основное его количество сосредоточено в крупности -0,5+0,1 и -0,1+0,02 мм.

Доказано, что единственным эффективным методом обогащения W-содержащих лежалых хвостов Джидинского ВМК является гравитационный. На основе анализа обобщенных кривых гравитационной обогатимости лежалых W-содержащих хвостов установлено, что отвальные хвосты с минимальными потерями вольфрама являются отличительным признаком обогащения техногенного сырья в крупности -0,1+0мм. Установлены новые закономерности разделительных процессов, определяющие технологические показатели гравитационного обогащения лежалых хвостов Джидинского ВМК в крупности +0,1 мм.

Доказано, что из гравитационных аппаратов, применяемых в горной отрасли при обогащении W-содержащих руд, для максимального извлечения вольфрама из техногенного сырья Джидинского ВМК в черновые W-концентраты пригодны винтовой сепаратор и центробежный концентратор KNELSON. Эффективность использования концентратора KNELSON подтверждена также для доизвлечения вольфрама из хвостов первичного обогащения техногенного W-содержащего сырья в крупности - 0,1мм.

3. Оптимизированная технологическая схема извлечения вольфрама их лежалых хвостов рудообогащения Джидинского ВМК позволила получить кондиционный W-концентрат, решить проблему истощения минеральных ресурсов Джидинского ВМК и снизить негативное воздействие производственной деятельности предприятия на окружающую среду.

Существенными признаками разработанной технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК являются:

Узкая классификация по крупности питания первичных обогатительных операций;

Предпочтительное использование гравитационного оборудования.

При полупромышленных испытаниях разработанной технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК получен кондиционный W-концентрат с содержанием WO3 62,7% при извлечении 49,9%. Срок окупаемости обогатительной установки по переработке лежалых хвостов Джидинского ВМК с целью извлечения вольфрама составил 0,55 года.

Библиография Диссертация по наукам о земле, кандидата технических наук, Артемова, Олеся Станиславовна, Иркутск

1. Технико-экономическая оценка техногенных месторождений цветных металлов: Обзор/В.В. Оленин, Л.Б. Ершов, И.В. Белякова. М., 1990 - 64 с.

2. Горные науки. Освоение и сохранение недр Земли / РАН, АГН, РАЕН, МИА; Под ред. К.Н. Трубецкого. М.: Изд-во Академии горных наук, 1997. -478 с.

3. Новиков А.А., Сазонов Г.Т. Состояние и перспективы развития рудно-сырьевой базы цветной металлургии РФ, Горный журнал 2000 г - №8, С. 92-95.

4. Карелов С.В., Выварец А.Д., Дистергефт JI.B., Мамяченков С.В., Хилай В.В., Набойченко Е.С. Оценка эколого-экономической эффективности переработки вторичного сырья и техногенных отходов, Известия ВУЗов, Горный журнал 2002 г - № 4, С. 94-104.

5. Минеральные ресурсы России. Экономика и управление Модульные обогатительные фабрики, Специальный выпуск, сентябрь 2003 г. - HTJI ТОМС ИрГТУ.

6. Бересневич П.В. и др. Охрана окружающей среды при эксплуатации хвостохранилищ. М.: Недра, 1993. - 127 с.

7. Дудкин О.Б., Поляков К.И. Проблема техногенных месторождений, Обогащение руд 1999 г - № 11, С. 24-27.

8. Дерягин А.А., Котова В.М., Никольский A.JI. Оценка перспектив вовлечения в эксплуатацию техногенных месторождений, Маркшейдерия и недропользование 2001 г - № 1, С. 15-19.

9. Чуянов Г.Г. Хвостохранилища обогатительных фабрик, Известия ВУЗов, Горный журнал 2001 г - № 4-5, С. 190-195.

10. Воронин Д.В., Гавеля Э.А., Карпов С.В. Изучение и переработка техногенных месторождений, Обогащение руд - 2000 г № 5, С. 16-20.

11. Смолдырев А.Е. Возможности отработки хвостохранилищ, Горный журнал -2002 г-№7, С. 54-56.

12. Квитка В.В., Кумакова Л.Б., Яковлева Е.П. Переработка лежалых хвостов обогатительных фабрик Восточного Казахстана, Горный журнал - 2001 г -№9, С. 57-61.

13. Хасанова Г.Г. Кадастровая оценка техногенно-минеральных объектов Среднего Урала Известия ВУЗов, Горный журнал - 2003 г - № 4, С. 130136.

14. Туманова Е.С., Туманов P.P. Минеральное сырье. Сырье техногенное // Справочник. М.: ЗАО «Геоинформмарк», 1998. - 44 с.

15. Попов В.В. Минерально-сырьевая база России. Состояние и проблемы, Горный журнал 1995 г - № 11, С. 31-34.

16. Уздебаева Л.К. Лежалые хвосты обогащения - дополнительный источник получения металлов, Цветные металлы 1999 г - № 4, С. 30-32.

17. Фишман М.А., Соболев Д.С. Практика обогащения руд цветных и редких металлов, т. 1-2. -М.: Металлургиздат, 1957 1960.

18. Фишман М.А., Соболев Д.С. Практика обогащения руд цветных и редких металлов, т.3-4. М.: Госгортехиздат, 1963.

19. Леонов С.Б., Белькова О.Н. Исследование полезных ископаемых на обогатимость: Учебное пособие. - М.: «Интермет Инжиниринг», 2001. - 631с.

20. Трубецкой К.Н., Уманец В.Н., Никитин М.Б. Классификация техногенных месторождений, основные категории и понятия, Горный журнал - 1990 г -№ 1, С. 6-9.

21. Инструкция по применению Классификации запасов к месторождениям вольфрамовых руд. М., 1984 - 40 с.

22. Бетехтин А.Г., Голиков А.С., Дыбков В.Ф. и др. Курс месторождений полезных ископаемых Изд. 3-е перераб. и доп./Под. Ред. П.М. Татаринова и А.Г. Бетехтина-М.: Недра, 1964.

23. Хабиров В.В., Воробьев А.Е. Теоретические основы развития горнодобывающих и перерабатывающих производств Кыргызстана/Под ред. акад. Н.П. Лаверова. М.: Недра, 1993. - 316 с.

24. Изоитко В.М. Технологическая минералогия вольфрамовых руд. - Л.: Наука, 1989.-232 с.

25. Изоитко В.М., Бояринов Е.В., Шанаурин В.Е. Особенности минералого-технологической оценки руд на предприятиях вольфрам-молибденовой отрасли. М.ЦНИИЦВЕТМЕТ и информ., 1985.

26. Минелогическая энциклопедия/Под ред. К.Фрея: Пер. с англ. - Л-д: Недра, 1985.-512 с.

27. Минералогическое исследование руд цветных и редких металлов/Под общей ред. А.Ф. Ли. Изд. 2-ое. М.: Недра, 1967. - 260 с.

28. Рамдер Пауль Рудные минералы и их срастания. М.: ИЛ, 1962.

29. Коган Б.И. Редкие металлы. Состояние и перспективы. М.: Наука, 1979. - 355 с.

30. Кочурова Р.Н. Геометрические методы количественно-минералогического анализа горных пород. - Л-д: ЛГУ, 1957.-67 с.

31. Методические основы исследования химические состава горных пород, руд и минералов. Под ред. Г.В. Остроумова. М.: Недра, 1979. - 400 с.

32. Методы минералогических исследований: Справочник/Под ред. А.И. Гинзбурга. М.: Недра, 1985. - 480 с.

33. Копченова Е.В. Минералогический анализ шлихов и рудных концентратов. М.: Недра, 1979.

34. Определение минеральных форм вольфрама в первичных рудах и рудах коры выветривания гидротермальных кварцевых штокверков. Инструкция НСАМ № 207-Ф-М.: ВИМС, 1984.

35. Методические минералогические исследования. М.: Наука, 1977. - 162 с. (АН СССРИМГРЭ).

36. Панов Е.Г., Чуков А.В., Кольцов А.А. Оценка качества сырья для вторичной переработки отходов горно-обогатительного производства. Разведка и охрана недр, 1990 №4.

37. Материалы Республиканского Аналитического Центра ПГО "Бурятгеология" по исследованию вещественного состава руд Холтосонского и Инкурского месторождений и техногенных продуктов Джидинского комбината. Улан-Удэ, 1996.

38. Отчет Гиредмета "Изучение вещественного состава и обогатимости двух, проб лежалых хвостов Джидинского ГОКа". Авторы Чистов Л.Б., Охрименко В.Е. М., 1996.

39. Зеликман А.Н., Никитин JI.C. Вольфрам. М.: Металлургия, 1978. - 272 с.

40. Федотов К.В. Численное определение составляющих скорости потока жидкости в центробежных аппаратах, Обогащение руд - 1998 г № 4, С. 34-39.

41. Шохин В.И. Гравитационные методы обогащения. М.: Недра, 1980. - 400 с.

42. Фоменко Т.Г. Гравитационные процессы обогащения полезных ископаемых. М.: Недра, 1966. - 330 с.

43. Воронов В.А. Об одном подходе к управлению раскрытием минералов в процессе измельчения, Обогащение руд 2001 г - № 2, С. 43-46.

44. Барский JI.A., Козин В.З. Системный анализ в обогащении полезных ископаемых. М.: Недра, 1978. - 486 с.

45. Технологическая оценка минерального сырья. Методы исследования: Справочник/Под ред. П.Е. Остапенко. М.: Недра, 1990. - 264 с.

46. Сорокин М.М, Шепета Е.Д., Куваева И.В. Снижение потерь триоксида вольфрама с сульфидными отвальными продуктами. Физико-технологические проблемы разработки полезных ископаемых, 1988 №1, С. 59-60.

47. Отчет Научно-внедренческого центра "Экстехмет" "Оценка обогатимости сульфидных продуктов Холтосонского месторождения". Авторы Королев Н.И., Крылова Н.С. и др., М., 1996.

48. Добромыслов Ю.П., Семенов М.И. и др. Разработка и внедрение технологии комплексной переработки отвальных продуктов обогатительных фабрик Джидинского комбината. Комплексное использование минерального сырья, Алма-Ата, 1987 №8. С. 24-27.

49. Никифоров К.А., Золтоев Е.В. Получение искусственного вольфрамового сырья из низкосортных побнеритовых промпродуктов обогатительной фабрики. Комплексное использование минерального сырья, 1986 №6, С.62-65.

50. Методика определения предотвращенного экологического ущерба/Гос. Комитета РФ по охране окружающей среды. М., 1999. - 71 с.

51. Рубинштейн Ю.Б., Волков JI.A. Математические методы в обогащении полезных ископаемых. - М.: Недра, 1987. 296 с.

52. Современные методы минералогического исследования/Под ред. Е.В. Рожкова, т.1. М.: Недра, 1969. - 280 с.

53. Современные методы минералогического исследования/Под ред. Е.В. Рожкова, т.2. М.: Недра, 1969. - 318 с.

54. Электронная микроскопия в минералогии/Под общей ред. Г.Р. Венка. Пер. с англ. М.: Мир, 1979. - 541 с.

55. Фекличев В.Г. Диагностические спектры минералов. - М.: Недра, 1977. - 228 с.

56. Кэмерон Ю.Н. Рудная микроскопия. М.: Мир, 1966. - 234 с.

57. Волынский И.С. Определение рудных минералов под микроскопом. - М.: Недра, 1976.

58. Вяльсов JT.H. Оптические методы диагностики рудных минералов. - М.: Недра, 1976.-321 с.

59. Исаенко М.П., Боришанская С.С., Афанасьев Е.Л. Определитель главнейших минералов руд в отраженном свете. М.: Недра, 1978.

60. Зевин Л.С., Завьялова Л.Л. Количественный рентгенографический фазовый анализ. М.: Недра, 1974.

61. Большаков А.Ю., Комлев В.Н. Методические рекомендации по оценке обогатимости руд ядерно-физическими методами. Апатиты: КФ АН СССР, 1974.-72 с.

62. Васильев Е.К., Нахмансон М.С. Качественный рентгено-фазовый анализ. - Новосибирск: Наука, СО, 1986. 199 с.

63. Филлипова Н.А. Фазовый анализ руд и продуктов их переработки. - М.: Химия, 1975.-280 с.

64. Блохин М.А. Методы рентгеноспектральных исследований. - М., Физматгиз, 1959. 386 с.

65. Технологическая оценка минерального сырья. Опытные установки: Справочник/Под ред. П.Е. Остапенко. М.: Недра, 1991. - 288 с.

66. Богданович А.В. Пути совершенствования гравитационного обогащения мелкозернистых руд и шламов, Обогащение руд 1995 г - № 1-2, С. 84-89.

67. Плотников Р.И., Пшеничный Г.А. Флюорисцентный рентгенорадиометрический анализ. - М., Атомиздат, 1973. - 264 с.

68. Мокроусов В. А., Лилеев В. А. Радиометрическое обогащение нерадиоактивных руд. М.: Недра, 1978. - 191 с.

69. Мокроусов В.А. Изучение гранулометрического состава и контрастности полезных ископаемых для оценки возможности обогащения: Методические рекомендации/ВИМС. М.: 1978. - 24 с.

70. Барский Л.А., Данильченко Л.М. Обогатимость минеральных комплексов. -М.: Недра, 1977.-240 с.

71. Альбов М.Н. Опробование месторождений полезных ископаемых. - М.: Недра, 1975.-232 с.

72. Митрофанов С.И. Исследование полезных ископаемых на обогатимость. - М.: Металлургиздат, 1954.-495 с.

73. Митрофанов С.И. Исследование полезных ископаемых на обогатимость. - М.: Госгортехиздат, 1962. - 580 с.

74. Уральская Государственная Горно-Геологическая Академия, 2002, С. 6067.

75. Кармазин В.В., Кармазин В.И. Магнитные и электрические методы обогащения. М.: Недра, 1988. - 303 с.

76. Олофинский Н.Ф. Электрические методы обогащения. 4-е изд., перераб. и доп. М.: Недра, 1977. - 519 с.

77. Месеняшин А.И. Электрическая сепарация в сильных полях. М.: Недра, 1978.

78. Полькин С.И. Обогащение руд и россыпей редких металлов. М.: Недра, 1967.-616 с.

79. Справочник по обогащению руд. Специальные и вспомогательные процессы, испытания обогатимости, контроль и автоматика /Под ред. О.С. Богданова. М.: Недра, 1983 - 386 с.

80. Справочник по обогащению руд. Основные процессы./Под ред. О.С. Богданова. М.: Недра, 1983. - 381 с.

81. Справочник по обогащению руд. В 3-х т. Гл. ред. О.С. Богданов. Т.З. Обогатительные фабрики. Отв. Ред. Ю.Ф. Ненарокомов. М.: Недра, 1974.- 408 с.

82. Горный журнал 1998 г - № 5, 97 с.

83. Потемкин А.А. Компания KNELSON CONSENTRATOR мировой лидер в производстве гравитационных центробежных сепараторов, Горный журнал- 1998 г-№ 5, С. 77-84.

84. Богданович А.В. Разделение в центробежном поле взвешенных в жидкости частиц в псевдостатических условиях, Обогащение руд - 1992 г № 3-4, С. 14-17.

85. Станойлович Р. Новые направления в развитии гравитационной концентрации, Обогащение руд 1992 г - № 1, С. 3-5.

86. Подкосов Л.Г. О теории гравитационного обогащения, Цветные металлы - 1986 г-№7, С. 43-46.

87. Богданович А.В. Интенсификация процессов гравитационного обогащения в центробежных полях, Обогащение руд 1999 г - № 1-2, С. 33-36.

88. Полькин С.И., Обогащение руд и россыпей редких и благородных металлов. 2-е изд., перераб. и доп. - М.: Недра, 1987. - 429 с.

89. Полькин С.И., Лаптев С.Ф. Обогащение оловянных руд и россыпей. - М.: Недра, 1974.-477 с.

90. Абрамов А.А. Технология обогащения руд цветных металлов. М.: Недра, 1983.-359 с.

91. Карпенко Н.В. Опробование и контроль качества продуктов обогащения. - М.: Недра, 1987.-214 с.

92. Андреева Г.С., Горюшкин С.А. переработка и обогащение полезных ископаемых россыпных месторождений. М.: Недра, 1992. - 410 с.

93. Енбаев И.А. Модульные центробежные установки для концентрации драгоценных и благородных металлов из россыпных и техногенных месторождений, Обогащение руд 1997 г - № 3, С.6-8.

94. Чантурия В.А. Технология переработки руд и россыпей благородных металлов, Цветные металлы 1996 г - № 2, С. 7-9.

95. Калиниченко В.Э." Установка для доизвлечения металлов из отвальных хвостов текущего производства, Цветные металлы 1999 г - № 4, С.33-35.

96. Бергер Г.С., Орел М.А., Попов Е.Л. Полупромышленные испытания руд на обогатимость. М.: Недра, 1984. - 230 с.

97. ГОСТ 213-73 «Технические требования (состав,%) к вольфрамовым концентратам, получаемым из вольфрамсодержащих руд»

99. Федотов К.В., Артемова О.С., Полинскина И.В. Оценка возможности переработки лежалых хвостов Джидинского ВМК, Обогащение руд: Сб. научн. трудов. Иркутск: Изд-во ИрГТУ, 2002. - 204 с, С. 74-78.

100. Федотов К.В., Артемова О.С. Проблемы переработки лежалых вольфрамсодержащих продуктов Современные методы переработки минерального сырья: Материалы конференции. Иркутск: Ирк. Гос. Тех. Ун-т, 2004г. 86 с.

101. Артемова О.С., Федотов К.В., Белькова О.Н. Перспективы использования техногенного месторождения Джидинского ВМК. Всероссийская научно-практическая конференция «Новые технологии в металлургии, химии, обогащении и экологии» г. Санкт-Петербург, 2004 г.

Есть несколько путей его получения; первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитных руд) и окислительным обжигом.

Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамит натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т.е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:

CaWO4 → H2WO4 или (NH4)2WO4 → WO3,

можно выделить очищенную от большей части примесей окись вольфрама.

Давайте расмотрим еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.

Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с WO3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450...600°C) и в «горячих» (750...1100°C) зонах; в «холодных» - до низшего окисла WO2, дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.

Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется белее высокая температура - до 1300...1400°C. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.

Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl6, который разлагается на вольфрам и хлор при 1600°C. В присутствии водорода этот процесс идет уже при 1000°C.

Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100...1300°C) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость. Далее...

Введение

1 . Значимость техногенного минерального сырья

1.1. Минеральные ресурсы рудной отрасли в РФ и вольфрамовой подотрасли

1.2. Техногенные минеральные образования. Классификация. Необходимость использования

1.3. Техногенное минеральное образование Джидинского ВМК

1.4. Цели и задачи исследования. Методы исследования. Положения, выносимые на защиту

2. Исследование вещественного состава и технологических свойств лежалых хвостов джидинского вмк

2.1. Геологическое опробование и оценка распределения вольфрама

2.2. Вещественный состав минерального сырья

2.3. Технологические свойства минерального сырья

2.3.1. Гранулометрический состав

2.3.2. Исследование возможности радиометрической сепарации минерального сырья в исходной крупности

2.3.3. Гравитационный анализ

2.3.4. Магнитный анализ

3. Разработка технологической схемы

3.1. Технологическое тестирование разных гравитационных аппаратов при обогащении лежалых хвостов различной крупности

3.2. Оптимизация схемы переработки ОТО

3.3. Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки

Введение к работе

Науки об обогащении полезных ископаемых, прежде всего, направлены на разработку теоретических основ процессов разделения минералов и создание обогатительных аппаратов, на раскрытие взаимосвязи закономерностей распределения компонентов и условий разделения в продуктах обогащения с целью повышения селективности и скорости разделения, его эффективности и экономичности, экологической безопасности.

Несмотря на значительные запасы полезных ископаемых и сокращение в последние годы ресурсопотребления, истощение минеральных ресурсов является одной из важнейших проблем в России. Слабое использование ресурсосберегающих технологий способствует большим потерям полезных ископаемых при добыче и обогащении сырья .

Анализ развития техники и технологии обогащения полезных ископаемых за последние 10-15 лет указывает на значительные достижения отечественной фундаментальной науки в области познания основных явлений и закономерностей при разделении минеральных комплексов, что позволяет создать высокоэффективные процессы и технологии для первичной переработки руд сложного вещественного состава и, как следствие, обеспечить металлургическую промышленность необходимой номенклатурой и качеством концентратов. В то же время в нашей стране в сравнении с развитыми зарубежными государствами до сих пор наблюдается значительное отставание в развитии машиностроительной базы для производства основного и вспомогательного обогатительного оборудования, в его качестве, металлоемкости, энергоемкости и износостойкости .

Кроме того, в силу ведомственной принадлежности горно-обогатительных предприятий комплексное сырье перерабатывалось только с учетом необходимой потребности отрасли в конкретном металле, что приводило к нерациональному использованию природных минеральных ресурсов и увеличению затрат на складирование отходов . В настоящее время накоплено

более 12 млрд.т отходов, содержание ценных компонентов в которых в ряде случаев превышает их содержание в природных месторождениях .

Помимо вышеперечисленных негативных тенденций, начиная с 90-х годов резко обострилась экологическая обстановка на горно-обогатительных предприятиях (в ряде регионов угрожая существованию не только биоты, но и человека), наметилось прогрессирующее снижение добычи руд цветных и черных металлов, горно-химического сырья, ухудшение качества перерабатываемых руд и, как следствие, вовлечение в переработку труднообогатимых руд сложного вещественного состава, характеризующихся низким содержанием ценных компонентов, тонкой вкрапленностью и близкими технологическими свойствами минералов. Так, за последние 20 лет содержание цветных металлов в рудах снизилось в 1,3-1,5 раза, железа в 1,25 раза, золота в 1,2 раза, доля труднообогатимых руд и угля возросла с 15% до 40% от общей массы сырья, поступающего на обогащение .

Воздействие человека на природную среду в процессе хозяйственной деятельности ныне приобретает глобальный характер. По масштабам извлекаемых и перемещаемых пород, преобразования рельефа, воздействия на перераспределение и динамику поверхностных и подземных вод, активизации геохимического переноса и т.д. эта деятельность сопоставима с геологическими процессами .

Беспрецедентный масштаб извлекаемых минеральных ресурсов ведет к их быстрому истощению, накоплению на поверхности Земли, в атмосфере и гидросфере большого числа отходов, постепенной деградации природных ландшафтов, сокращению биоразнообразия, снижению природного потенциала территорий и их жизнеобеспечивающих функций .

Хранилища отходов рудообогащения являются объектами повышенной экологической опасности из-за их негативного воздействия на воздушный бассейн, подземные и поверхностные воды, почвенный покров на обширных территориях . Наряду с этим хвостохранилища - малоизученные техногенные месторождения, использование которых позволит получить дополнительные

источники рудно-минерального сырья при существенном уменьшении масштабов нарушения геологической среды в регионе .

Производство продукции из техногенных месторождений, как правило, в несколько раз дешевле, чем из специально добываемого для этого сырья, и характеризуется быстрой окупаемостью капиталовложений. Однако сложный химический, минералогический и гранулометрический состав хвостохранилищ, а также широкий набор содержащихся в них полезных ископаемых (от главных и попутных компонентов до простейших строительных материалов) затрудняют расчет суммарного экономического эффекта от их переработки и определяют индивидуальный подход к оценке каждого хвостохранилища .

Следовательно, в настоящий момент выявился ряд неразрешимых противоречий между изменением характера минерально-сырьевой базы, т.е. необходимостью вовлечения в переработку труднообогатимых руд и техногенных месторождений, экологически обостренной ситуацией в горнопромышленных регионах и состоянием техники, технологии и организации первичной переработки минерального сырья .

Вопросы использования отходов обогащения полиметаллических, золотосодержащих и редких металлов имеют как экономический, так и экологические аспекты .

В достижении современного уровня развития теории и практики переработки хвостов обогащения руд цветных, редких и благородных металлов большой вклад внесли В.А. Чантурия, В.З. Козин, В.М. Авдохин, СБ. Леонов, Л.А. Барский, А.А. Абрамов, В.И. Кармазин, СИ. Митрофанов и др.

Важной составной частью общей стратегии рудной отрасли, в т.ч. вольфрамовой, является рост использования отходов рудообогащения, как дополнительных источников рудно-минерального сырья, при существенном уменьшении масштабов нарушения геологической среды в регионе и негативного воздействия на все компоненты окружающей среды .

В области использования отходов рудообогащения важнейшим является детальное минералого-технологическое исследование каждого конкретного,

индивидуального техногенного месторождения, результаты которого позволят разработать эффективную и экологически безопасную технологию промышленного освоения дополнительного источника рудно-минерального сырья .

Рассматриваемые в диссертационной работе проблемы решались в соответствии с научным направлением кафедры Обогащения полезных ископаемых и инженерной экологии Иркутского государственного технического университета по теме «Фундаментальные и технологические исследования в области переработки минерального и техногенного сырья с целью комплексного его использования, с учетом экологических проблем в сложных индустриальных системах» и х/д темой № 118 «Исследование на обогатимость лежалых хвостов Джидинского ВМК».

Цель работы - научно обосновать, разработать и апробировать
рациональные технологические методы обогащения лежалых

В работе решались следующие задачи:

Оценить распределение вольфрама по всему пространству основного
техногенного образования Джидинского ВМК;

изучить вещественный состав лежалых хвостов Джижинского ВМК;

исследовать контрастность лежалых хвостов в исходной крупности по содержанию W и S (II);

исследовать гравитационную обогатимость лежалых хвостов Джидинского ВМК в различной крупности;

определить целесообразности использования магнитного обогащения для повышения качества черновых вольфрамсодержащих концентратов;

оптимизировать технологическую схему обогащения техногенного сырья ОТО Джидинского ВМК;

провести полупромышленные испытания разработанной схемы извлечения W из лежалых хвостов ДВМК;

Разработать схему цепи аппаратов для промышленной переработки лежалых хвостов Джидинского ВМК.

Для выполнения исследований использовалась представительная технологическая проба лежалых хвостов Джидинского ВМК.

При решении сформулированных задач использовались следующие методы исследования: спектральный, оптический, химический, минералогический, фазовый, гравитационный и магнитный методы анализа вещественного состава и технологических свойств исходного минерального сырья и продуктов обогащения.

На защиту выносятся следующие основные научные положения:

Установлены закономерности распределения исходного техногенного минерального сырья и вольфрама по классам крупности. Доказана необходимость первичной (предварительной) классификации по крупности 3 мм.

Установлены количественные характеристики лежалых хвостов рудообогащения руд Джидинского ВМК по содержанию WO3 и сульфидной серы. Доказано, что исходное минеральное сырье относится к категории неконтрастных руд. Выявлена достоверная и надежная корреляционная связь между содержаниями WO3 и S (II).

Установлены количественные закономерности гравитационной обогатимости лежалых хвостов Джидинского ВМК. Доказано, что для исходного материала любой крупности эффективным методом извлечения W является гравитационное обогащение. Определены прогнозные технологические показатели гравитационного обогащения исходного минерального сырья в различной крупности.

Установлены количественные закономерности распределения лежалых хвостов рудообогащения Джидинского ВМК по фракциям различной удельной магнитной восприимчивости. Доказана эффективность последовательного применения магнитной и центробежной сепарации для повышения качества черновых W-содержащих продуктов. Оптимизированы технологические режимы магнитной сепарации.

Вещественный состав минерального сырья

При обследовании побочного хвостохранилища (хвостохранилище аварийного сброса (ХАС)) из шурфов и зачисток по склонам отвалов отобрано 35 бороздовых проб; общая длина борозд - 46 м. Шурфы и зачистки расположены в 6 разведочных линиях, отстоящих друг от друга на 40-100 м; расстояние между шурфами (зачистками) в разведочных линиях от 30-40 до 100-150 м. Опробованы все литологические разновидности песков. Пробы проанализированы на содержание W03 и S (II) . На этом участке отобрано 13 проб из шурфов глубиной 1,0 м. Расстояние между линиями - около 200 м, между выработками - от 40 до 100 м (в зависимости от распространения однотипного литологического слоя). Результаты анализов проб на содержание WO3 и серы приведены в табл. 2.1. Таблица 2.1 - Содержание WO3 и сульфидной серы в частных пробах ХАС Можно увидеть, что содержание WO3 колеблется в пределах 0,05-0,09 %, за исключением пробы М-16, отобранной из среднезернистых серых песков. В этой же пробе установлены высокие концентрации S (II) - 4,23 % и 3,67 %. По отдельным пробам (М-8, М-18) отмечено высокое содержание S сульфатной составляет (20-30 % от общего содержания серы). В верхней части хвостохранилища аварийного сброса было отобрано 11 проб различных литологических разностей. Содержание WO3 и S (II), в зависимости от происхождения песков, варьирует в большом диапазоне: от 0,09 до 0,29% и от 0,78 до 5,8%, соответственно. Повышенные содержания WO3 характерны для средне-крупнозернистых разностей песков. Содержание S (VI) составляет 80 - 82 % от общего содержания S, но в отдельных пробах преимущественно с низкими содержаниями трехокиси вольфрама и общей серы, снижается до 30 %.

Запасы месторождения могут быть оценены как ресурсы категории Pj (см. табл. 2.2). По верхней части длины шурфа изменяются в большом диапазоне: от 0,7 до 9,0 м, поэтому среднее содержание контролируемых компонентов рассчитано с учетом параметров шурфов. На наш взгляд, исходя из приведенной характеристики, с учетом состава лежалых хвостов, их сохранности, условий залегания, засоренности бытовыми отходами, содержания в них WO3 и степени окисления серы, промышленный интерес может представлять лишь верхняя часть хвостохранилища аварийного сброса с ресурсами 1,0 млн. т. песков и 1330 т WO3 с содержанием WO3 0,126 %. Расположение их в непосредственной близости от проектируемой обогатительной фабрики (250-300 м) благоприятствует их транспортировке. Нижняя часть хвостохранилища аварийного сброса подлежит утилизации в рамках программы экологического оздоровления г. Закаменска.

На площади месторождения было отобрано 5 проб. Интервал между точками отбора - 1000-1250 м. Пробы отбирались на всю мощность слоя, анализировались на содержание WO3, Бобщ и S (II) (см. табл. 2.3). Таблица 2.3 - Содержание WO3 и серы в частных пробах АТО Из результатов анализов видно, что содержание WO3 невелико, изменяется от 0,04 до 0,10 %. Среднее содержание S (II) - 0,12% и не представляет практического интереса. Проведенные работы не позволяют рассматривать побочное аллювиальное хвостохранилище в качестве потенциального промышленного объекта. Однако, как источник загрязнения окружающей среды, эти образования подлежат утилизации . Основное хвостохранилище (ОТО) разведано по параллельным разведочным линиям, ориентированным по азимуту 120 и расположенным через 160 - 180 м друг от друга. Разведочные линии ориентированы вкрест простирания дамбы и пульпровода, через который производился сброс хвостов рудообогащения, осаждавшихся субпараллельно гребню дамбы. Таким образом, разведочные линии ориентированы были также вкрест напластованию техногенных отложений. По разведочным линиям бульдозером пройдены траншеи на глубину 3-5 м, из которых осуществлена проходка шурфов на глубину от 1 до 4 м. Глубина траншей и шурфов лимитировалась устойчивостью стенок выработок. Шурфы в траншеях пройдены через 20 - 50 м в центральной части месторождения и через 100 м - на юго-восточном фланге, на площади бывшего пруда-отстойника (ныне высохшего), из которого в период работы комбината осуществлялось водоснабжение обогатительных фабрик.

Площадь ОТО по границе распространения составляет 1015 тыс. м (101,5 га); по длинной оси (вдоль долины рч. Барун-Нарын) вытянуто на 1580 м, в поперечном направлении (вблизи дамбы) ширина его равна 1050 м. На этой площади в пяти основных разведочных линиях из предварительно созданных траншей пройдено 78 шурфов. Следовательно, один шурф освещает площадь 12850 м, что эквивалентно средней сети 130x100 м. В центральной части месторождения, представленной разнозернистыми песками, в районе размещения пульповодов на площади 530 тыс. м (52 % площади ТМО) пройдено 58 шурфов и одна скважина (75 % всех выработок); площадь разведочной сети составила в среднем 90x100 м2. На крайнем юго-восточном фланге на месте бывшего пруда-отстойника в области развития тонкозернистых осадков - илов пройдено 12 шурфов (15 % всего количества), характеризующих площадь около 370 тыс. м (37 % от общей площади техногенного месторождения); средняя площадь сети здесь составила 310x100 м2. В области перехода от разнозернистых песков к илам, сложенной пылеватыми песками, на площади около 115 тыс. м (11% площади техногенного месторождения) пройдено 8 шурфов (10% количества выработок на техногенном месторождении) и средняя площадь разведочной сети составила 145x100 м. Средняя длина опробованного сечения на техногенном месторождении 4,3 м, в том числе по разнозернистым пескам -5,2 м, пылеватым пескам -2,1 м, илам -1,3 м. Абсолютные отметки современного рельефа поверхности техногенного месторождения в опробованных сечениях изменяются от 1110- 1115 м вблизи верхней части дамбы, до 1146 - 148 м в центральной части идо1130-1135мна юго-восточном фланге. В совокупности опробовано 60 - 65% мощности техногенного месторождения. Траншеи, шурфы, зачистки и закопуши задокументированы в М 1:50 -1:100 и опробованы бороздой сечением 0,1x0,05 м2 (1999 г.) и 0,05x0,05 м2 (2000 г.). Длина бороздовых проб составляла 1 м, масса 10 - 12 кг в 1999г. и 4 - 6 кг в 2000г. Суммарная длина опробованных интервалов в разведочных линиях составила 338 м, в целом с учетом участков детализации и отдельных сечений вне сети - 459 м. Масса отобранных проб - 5 т.

Пробы вместе с паспортом (характеристика породы, номер пробы, выработки и исполнитель) упаковывались в полиэтиленовые и затем матерчатые мешки и направлялись в РАЦ Республики Бурятия, где взвешивались, высушивались, анализировались на содержание W03, и S (II) по методикам НС AM . Правильность анализов подтверждена сопоставимостью результатов рядовых, групповых (анализы РАЦ) и технологических (анализы ЦНИГРИ и ВИМСа) проб. Результаты анализа частных технологических проб, отобранных на ОТО, приведены в Приложении 1. Основное (ОТО) и два побочных хвостохранилища (ХАТ и АТО) Джидинского ВМК статистически сравнивались по содержанию WO3 с помощью критерия Стьюдента (см. Приложение 2) . С доверительной вероятностью 95% установлено: - отсутствие значимого статистического различия по содержанию WO3 между частными пробами побочных хвостохранилищ; - средние результаты опробования ОТО по содержанию WO3 в 1999 и 2000 гг. относятся к одной генеральной совокупности. Следовательно, химический состав основного хвостохранилища незначимо изменяется во времени под влиянием внешних воздействий. Все запасы ОТО могут быть переработаны по единой технологии.; - средние результаты опробования основного и побочных хвостохранилищ по содержанию WO3 значимо отличаются друг от друга. Следовательно, для вовлечения минерального сырья побочных хвостохранилищ требуется разработка локальной технологии обогащения.

Технологические свойства минерального сырья

По грансоставу отложения разделяются на три типа осадков: пески разнозернистые; пески пылеватые (алевритистые); илы . Между этими разновидностями осадков существуют постепенные переходы. Более четкие границы наблюдаются по мощности разреза. Они обусловлены чередованием осадков разного грансостава, разного цвета (от темно-зеленого до светло-желтого и серого) и разного вещественного состава (кварц-полевошпатовая нерудная часть и сульфидная с магнетитом, гематитом, гидроокислами железа и марганца). Вся толща слоистая - от тонко до грубослоистой; последняя более характерна для крупнозернистых разностей отложений или прослоев существенно сульфидной минерализации. Мелкозернистые (алевритистые, иловые фракции, либо слои, сложенные темноцветными - амфиболом, гематитом, гетитом) обычно образуют тонкие (первые см - мм) слойки. Залегание всей толщи осадков субгоризонтальное с преобладающим падением в 1-5 в северных румбах. Пески разнозерн истые расположены в северо-западной и центральной части ОТО, что обусловлено осаждением их вблизи очага разгрузки -пульповода. Ширина полосы разнозернистых песков 400-500 м, по простиранию они занимают всю ширину долины - 900-1000 м. Цвет песков серо-желтый, желто-зеленый. Грансостав переменный - от мелкозернистых до крупнозернистых разностей вплоть до линз гравелитов мощностью 5-20 см и протяженностью до 10-15 м. Пески пылеватые (алевритистые) выделяются в виде пласта мощностью 7-10 м (горизонтальная мощность, выход на поверхность 110-120 м). Залегают под разнозернистыми песками. В разрезе представляют собой слоистую толщу серого, зеленовато-серого цвета с чередованием тонкомелкозернистых песков с прослойками илов. Объем илов в разрезе пылеватых песков увеличивается в юго-восточном направлении, где илы составляют основную часть разреза.

Илы слагают юго-восточную часть ОТО и представлены более тонкими частицами отходов обогащения темно-серого, темно-зеленого, голубовато-зеленого цвета с прослойками песков серовато-желтого цвета. Основной особенностью их строения является более однородная, более массивная текстура с реже проявленной и менее отчетливо выраженной слоистостью. Илы подстилают пески пылеватые и залегают на основании ложа - аллювиально-делювиальных отложениях. Гранулометрическая характеристика минерального сырья ОТО с распределением золота, вольфрама, свинца, цинка, меди, флюорита (кальция и фтора) по классам крупности приведена в табл. 2.8. По данным гранулометрического анализа основная масса материала пробы ОТО (около 58%) имеет крупность -1+0,25 мм, по 17% приходится на крупный (-3+1 мм) и мелкий (-0,25+0,1) мм классы. Доля материала крупностью менее 0,1 мм составляет около 8%, из которого половина (4,13%) приходится на шламовый класс-0,044+0 мм. Для вольфрама характерно незначительное колебание содержания в классах крупности от -3 +1 мм до -0,25+0,1 мм (0,04-0,05%) и резкое повышение (до 0,38%) в классе крупности -0,1+0,044 мм. В шламовом классе -0,044+0 мм содержание вольфрама снижается до 0,19%. Накопление гюбнерита происходит только в мелкоразмерном материале, то есть в классе -0,1+0,044 мм. Таким образом, на 25,28% вольфрам сосредоточен в классе -0,1+0,044 мм при выходе данного класса около 4% и на 37,58% в классе -0,1+0 мм при выходе данного класса 8,37%. Дифференциальная и интегральная гистограммы распределения частиц минерального сырья ОТО по классам крупности и гистограммы абсолютного и относительного распределения W по классам крупности минерального сырья ОТО представлены на рис.2.2. и 2.3. В табл. 2.9 приведены данные по вкрапленности гюбнерита и шеелита в минеральном сырье ОТО исходной крупности и измельченном до - 0,5мм.

В классе -5+3 мм исходного минерального сырья нет зерен побнерита и шеелита, а также сростков. В классе -3+1 мм содержание свободных зерен шеелита и гюбнерита достаточно большое (37,2% и 36,1% соответственно). В классе -1+0,5 мм обе минеральные формы вольфрама присутствуют практически в равных количествах, как в виде свободных зерен, так и в виде сростков. В тонких классах -0,5+0,25, -0,25+0,125, -0,125+0,063, -0,063+0 мм содержание свободных зерен шеелита и гюбнерита существенно больше содержания сростков (содержание сростков варьирует от 11,9 до 3,0 %) Класс крупности -1+0,5 мм является граничным и в нем содержание свободных зерен шеелита и гюбнерита и их сростков практически одинаковы. На основании данных табл. 2.9 можно сделать вывод о необходимости классификации обесшламленного минерального сырья ОТО по крупности 0,1 мм и раздельного обогащения получаемых классов. Из крупного класса необходимо выделить свободные зерна в концентрат, а хвосты, содержащие сростки, подвергнуть доизмельчению. Измельченные и обесшламленные хвосты следует объединить с обесшламленным классом -0,1+0,044 исходного минерального сырья и направить на гравитационную операцию II с целью извлечения тонких зерен шеелита и побнерита в промпродукт.

2.3.2 Исследование возможности радиометрической сепарации минерального сырья в исходной крупности Радиометрическая сепарация - процесс крупнокускового разделения руд по содержанию ценных компонентов, основанный на избирательном воздействии различных видов радиационного излучения на свойства минералов и химические элементы. Известно свыше двадцати методов радиометрического обогащения; наиболее перспективные из них - рентгенорадиометрический, рентгенолюминесцентный, радиорезонансный, фотометрический, авторадиометрический и нейтронно-абсорбционный . С помощью радиометрических методов решают следующие технологические задачи: предварительное обогащение с удалением из руды пустой породы; выделение технологических разновидностей, сортов с последующим обогащением по отдельным схемам; выделение продуктов, пригодных для химико-металлургического передела. Оценка радиометрической обогатимости включает два этапа: изучение свойств руд и экспериментальное определение технологических показателей обогащения. На первом этапе изучают следующие основные свойства: содержание ценных и вредных компонентов, гранулометрический состав, одно- и многокомпонентную контрастность руды. На этом этапе устанавливают принципиальную возможность применения радиометрического обогащения, определяют предельные показатели сепарации (на стадии изучения контрастности), выбирают методы и признаки разделения, оценивают их эффективность, определяют теоретические показатели сепарации, разрабатывают принципиальную схему радиометрического обогащения с учетом особенностей технологии последующей переработки. На втором этапе определяют режимы и практические результаты сепарации, проводят укрупнено-лабораторные испытания схемы радиометрического обогащения, выбирают рациональный вариант схемы на основе технико-экономического сравнения комбинированной технологии (с радиометрической сепарацией в начале процесса) с базовой (традиционной) технологией.

В каждом конкретном случае массу, крупность и число технологических проб устанавливают в зависимости от свойств руды, особенностей строения месторождения и способов его разведки . Содержание ценных компонентов и равномерность их распределения в рудном массиве - определяющие факторы применения радиометрического обогащения. На выбор метода радиометрического обогащения влияют присутствие элементов-примесей, изоморфно связанных с полезными минералами и играющих в ряде случаев роль индикаторов, а также содержание вредных примесей, которые также могут быть использованы для этих целей.

Оптимизация схемы переработки ОТО

В связи с вовлечением в промышленную эксплуатацию бедных руд с содержанием вольфрама 0,3-0,4% в последние годы получили распространение многостадиальные комбинированные схемы обогащения, основанные на сочетании гравитации, флотации, магнитной и электрической сепарации, химической доводки бедных флотационных концентратов и др. . Проблемам совершенствования технологии обогащения бедных руд был посвящен специальный Международный Конгресс в 1982 г с Сан-Франциско. Анализ технологических схем действующих предприятий показал, что при рудоподготовке получили распространение различные методы предварительной концентрации: фотометрическая сортировка, предварительная отсадка, обогащение в тяжелых средах, мокрая и сухая магнитная сепарация. В частности, фотометрическая сортировка эффективно используется на одном из крупнейших поставщиков вольфрамовой продукции - на предприятии Маунт Корбайн в Австралии, перерабатывающее руды с содержанием вольфрама 0,09% на крупных фабриках КНР - Тайшань и Сихуашань.

При предварительной концентрации рудных компонентов в тяжелых средах используются высокоэффективные аппараты Динавирпуль фирмы Сала (Швеция). По этой технологии материал классифицируют и класс +0,5 мм обогащают в тяжелой среде, представленной смесью ферросилиция. На некоторых фабриках в качестве предварительной концентрации используют сухую и мокрую магнитную сепарацию. Так, на фабрике Эмерсон в США мокрую магнитную сепарацию используют для выделения содержащегося в руде пирротина и магнетита, и на фабрике Уиудаг в Турции класс - 10 мм подвергают сухому измельчению и магнитной сепарации в сепараторах с низкой магнитной напряженностью для выделения магнетита, а затем обогащают в сепараторах с высокой напряженностью с целью выделения граната. Дальнейшее обогащение включает концентрацию на столах, флотогравитацию и флотацию шеелита. Примером применения многостадиальных комбинированных схем обогащения бедных вольфрамовых руд, обеспечивающих получение высококачественных концентратов, являются технологические схемы, используемые на фабриках КНР. Так, на фабрике Тайшань производительностью 3000 т/сут по руде перерабатывают вольфрамит-шеелитовый материал с содержанием вольфрама 0,25%. Исходная руда подвергается ручной и фотометрической сортировке с удалением в отвал 55% пустой породы. Дальнейшее обогащение производят на отсадочных машинах и концентрационных столах. Полученные черновые гравитационные концентраты доводят методами флотогравитации и флотации. На фабриках Сихуашань, перерабатывающей руды с соотношением вольфрамита к шеелиту 10:1, применяется аналогичный гравитационный цикл. Черновой гравитационный концентрат поступает на флотогравитацию и флотацию, за счет которых удаляют сульфиды. Далее осуществляется мокрая магнитная сепарация камерного продукта с целью выделения вольфрамита и редкоземельных минералов. Магнитную фракцию направляют на электростатическую сепарацию и затем флотацию вольфрамита. Немагнитная фракция поступает на флотацию сульфидов, а хвосты флотации подвергают магнитной сепарации с получением шеелитового и касситерит-вольфрамитового концентратов. Суммарное содержание WO3 составляет 65% при извлечении 85% .

Отмечается расширение объемов использования процесса флотации в сочетании с химической доводкой получаемых при этом бедных концентратов. В Канаде на фабрике Маунт Плезент для обогащения комплексных вольфрамомолибденовых руд принята флотационная технология, включающая флотацию сульфидов, молибденита и вольфрамита. В основной сульфидной флотации извлекают медь, молибден, свинец, цинк. Концентрат перечищают, доизмельчают, подвергают пропарке и кондиционированию с сульфидом натрия. Молибденовый концентрат перечищают и подвергают кислотному выщелачиванию. Хвосты сульфидной флотации обрабатывают кремнефтористым натрием для депрессии минералов пустой породы и флотируют вольфрамит фосфорорганической кислотой с последующим выщелачиванием серной кислотой полученного вольфрамитового концентрата. На фабрике Кантунг (Канада) процесс флотации шеелита осложняется наличием в руде талька, поэтому введен первичный цикл флотации талька, затем флотируют медные минералы и пирротин. Хвосты флотации подвергают гравитационному обогащению с получением двух вольфрамовых концентратов. Хвосты гравитации направляют в цикл флотации шеелита, а полученный флотационный концентрат обрабатывают соляной кислотой. На фабрике Иксшеберг (Швеция) замена гравитационно-флотационной схемы чисто флотационной позволило получить шеелитовый концентрат с содержанием 68-70% WO3 при извлечении 90% (по гравитационно-флотационной схеме извлечение было 50%) . Большое внимание в последнее время уделяется совершенствованию технологии извлечения вольфрамовых минералов из шламов по двум основным направлениям: гравитационное обогащение шламов на современных многодечных концентраторах (аналогично обогащению оловосодержащих шламов) с последующей доводкой концентрата флотацией и обогащения на мокрых магнитных сепараторах с высокой напряженностью магнитного поля (для вольфрамитовых шламов).

Примером применения комбинированной технологии являются фабрики КНР. Технология включает сгущение шламов до 25-30% твердого, сульфидную флотацию, обогащение хвостов в центробежных сепараторах. Получаемый черновой концентрат (содержание WO3 24,3% при извлечении 55,8%) поступает на флотацию вольфрамита с использованием в качестве собирателя фосфорорганической кислоты. Флотационный концентрат с содержанием 45% WO3 подвергают мокрой магнитной сепарации с получением вольфрамитового и оловянного концентратов. По этой технологии из шламов с содержанием 0,3-0,4% WO3 получают вольфрамитовый концентрат с содержанием 61,3% WO3 при извлечении 61,6%. Таким образом, технологические схемы обогащения вольфрамовых руд направлены на повышение комплексности использования сырья и выделения в самостоятельные виды продукции всех попутных ценных компонентов. Так, на фабрике Куда (Япония) при обогащении комплексных руд получают 6 товарных продуктов . С целью определения возможности доизвлечения полезных компонентов из лежалых хвостов обогащения в середине 90-х гг. в ЦНИГРИ изучена технологическая проба с содержанием триоксида вольфрама 0,1%. Установлено, что основным ценным компонентом в хвостах является вольфрам. Содержания цветных металлов довольно низкие: меди 0,01-0,03; свинца - 0,09-0,2; цинка -0,06-0,15%, золото и серебро в пробе не обнаружены. Проведенные исследования показали, что для успешного извлечения триоксида вольфрама потребуются значительные расходы на доизмельчение хвостов и на данном этапе вовлечение их в переработку не перспективно.

Технологическая схема обогащения полезных ископаемых, включающая два и более аппаратов, воплощает в себе все характерные черты сложного объекта, а оптимизация технологической схемы может составить, по-видимому, основную задачу системного анализа. В решении этой задачи могут быть использованы почти все рассмотренные ранее методы моделирования и оптимизации. Однако структура схем обогатительных фабрик настолько сложна, что необходимо рассмотреть дополнительные методы оптимизации. Действительно, для схемы, состоящей хотя бы из 10-12 аппаратов, трудно реализовать обычный факторный эксперимент или проводить множественную нелинейную статистическую обработку. В настоящее время намечается несколько путей оптимизации схем эволюционный путь обобщения накопленного опыта и осуществления шага в удачном направлении изменения схемы.

Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки

Испытания проведены в октябрь-ноябрь 2003 г. При испытаниях за 24 часа переработано 15 т исходного минерального сырья. Результаты опробования разработанной технологической схемы представлены на рис. 3.4 и 3.5 и в табл. 3.6. Видно, что выход кондиционного концентрата равен 0,14%, содержание 62,7% при извлечении WO3 49,875%. Результаты спектрального анализа представительной пробы полученного концентрата, приведенные в табл. 3.7, подтверждают, что W-концентрат III магнитной сепарации является кондиционным и соответствует марке КВГ (Т) ГОСТа 213-73 «Технические требования (состав,%) к вольфрамовым концентратам, получаемым из вольфрамсодержащих руд» . Следовательно, разработанная технологическая схема извлечения W из лежалых хвостов рудообогащения Джидинского ВМК может быть рекомендована к промышленному использованию и лежалые хвосты переведены в дополнительное промышленное минеральное сырье Джидинского ВМК.

Для промышленной переработки лежалых хвостов по разработанной технологии при Q=400 т/ч разработан перечень оборудования, приведенный в На проведение обогатительной операции в крупности +0,1 мм рекомендуется обязательно устанавливать центробежный сепаратор KNELSON с непрерывной разгрузкой концентрата, в то время как при центробежном обогащении класса -0,1 мм необходимо осуществлять на центробежном сепараторе KNELSON с периодической разгрузкой концентрата. Таким образом установлено, что наиболее эффективным способом извлечения WO3 из ОТО крупностью -3+0,5 мм является винтовая сепарация; из классов крупности -0,5+0,1 и -0,1+0 мм и измельченных до -0,1 мм хвостов первичного обогащения - центробежная сепарация. Существенные особенности технологии переработки лежалых хвостов Джидинского ВМК заключаются в следующем: 1. Необходима узкая классификация питания, направляемого на первичное обогащение и доводку; 2. Необходим индивидуальный подход при выборе метода первичного обогащения классов различной крупности; 3. Получение отвальных хвостов возможно при первичном обогащении самого тонкого питания (-0,1+0,02мм); 4. Использование операций гидроциклонирования для совмещения операций обезвоживания и разделения по крупности. Слив содержит частицы крупностью -0,02 мм; 5. Компактность расположения оборудования. 6. Рентабельность технологической схемы (ПРИЛОЖЕНИЕ 4), конечный продукт кондиционный концентрат, удовлетворяющий требованиям ГОСТа 213-73.

Киселёв, Михаил Юрьевич

Вольфрамовые руды в нашей стране перерабатывались на крупных ГОКах (Орловский, Лермонтовский, Тырнаузский, Приморский, Джидинский ВМК) по ставшими классическими технологическим схемам с многостадиальным измельчением и обогащением материала, разделенного на узкие классы крупности, как правило, в два цикла: первичное гравитационное обогащение и доводка черновых кон-центратов различными методами. Это объясняется низким содер-жанием вольфрама в перерабатываемых рудах (0,1-0,8 % WO3) и высокими требованиями к качеству концентра-тов. Первичное обогащение для крупновкрапленных руд (минус 12+6 мм) осуществлялось посредством отсадки, а для средне-, мелко- и тонковкрапленных руд (минус 2+0,04 мм) применялись винтовые аппараты разных модификаций и типоразмеров.

В 2001 г. прекратил свою деятельность Джидинский вольфрам-молибденовый комбинат (Бурятия, г. Закаменск), накопив после себя многомиллионное по объему песков Барун-Нарынское техногенное месторождение вольфрама. С 2011 г. это месторождение перерабатывает ЗАО «Закаменск» на модульной обогатительной фабрике.

В основу технологической схемы было заложено обогащение в две стадии на центробежных концентраторах Knelson (CVD-42 для основной операции и CVD-20 для перечистной), доизмельчение промпродуктов и флотация коллективного гравиоконцентрата с получением концентрата марки КВГФ. За время эксплуатации был отмечен ряд факторов в работе концентраторов Knelson, негативно влияющих на экономические показатели переработки песков, а именно:

Высокие эксплуатационные затраты, в т.ч. энергозатраты и стоимость запчастей, что в условиях удаленности производства от генерирующих мощностей и повышенной стоимости электроэнергии данный фактор приобретает особую важность;

Низкая степень извлечения минералов вольфрама в гравитационный концентрат (от операции около 60 %);

Сложность этого оборудования в эксплуатации: при колебаниях вещественного состава обогащаемого сырья центробежные концентраторы требуют вмешательства в процесс и оперативной настройки (изменение давления ожжижающей воды, скорости вращения обогатительной чаши), что приводит к колебаниям качественных характеристик получаемых гравитационных концентратов;

Значительная удаленность завода-изготовителя и, как следствие, долгое время ожидания запасных частей.

В поисках альтернативного метода гравитационной концентрации компанией «Спирит» были проведены лабораторные испытания технологии винтовой сепарации с использованием промышленных винтовых сепараторов СВМ-750 и СВШ-750 производства ООО ПК «Спирит». Обогащение проходило в две операции: основная и контрольная с получением трех продуктов обогащения — концентрата, промпродукта и хвостов. Все полученные в результате опыта продукты обогащения проанализированы в лаборатории ЗАО «Закаменск». Лучшие результаты представлены в табл. 1.

Таблица 1. Результаты винтовой сепарации в лабораторных условиях

Полученные данные показали возможность применения в операции первичного обогащения винтовых сепараторов вместо концентраторов Knelson.

Следующим этапом было проведение полупромышленных испытаний на действующей схеме обогащения. Была смонтирована опытная полупромышленная установка с винтовыми аппаратами СВШ-2-750, которые были установлены параллельно с концентраторами Knelson CVD-42. Обогащение проводили в одну операцию, получаемые продукты направляли далее по схеме действующей обогатительной установки, а отбор проб производили непосредственно из процесса обогащения без остановок работы оборудования. Показатели полупромышленных испытаний представлены в табл. 2.

Таблица 2. Результаты сравнительных полупромышленных испытаний винтовых аппаратов и центробежных концентраторов Knelson

Показатели

Исходное питание

Концентрат

Извлечение, %

Результаты показывают, что обогащение песков более эффективно происходит на винтовых аппаратах, чем на центробежных концентраторах. Это выражается в более низком выходе концентрата (16,87 % против 32,26 %) при увеличении извлечения (83,13 % против 67,74 %) в концентрат минералов вольфрама. При этом получается более качественный концентрат WO3 (0,9 % против 0,42%),

Касситерит SnO 2 – основной промышленный минерал олова, который присутствует в оловосодержащих россыпях и коренных рудах. Содержание олова в нем составляет 78,8%. Касситерит имеет плотность 6900…7100 кг/т и твердость 6…7. Основными примесями в касситерите являются железо, тантал, ниобий, а также титан, марганец, свиней, кремний, вольфрам и др. От этих примесей зависят физико-химические свойства касситерита, например, магнитная восприимчивость, и его флотационная активность.

Станнин Cu 2 S·FeS·SnS 4 - сульфидный минерал олова, хотя и является наиболее распространенным минералом после касситерита, не имеет промышленного значения, во-первых, потому, чтов нем невысокое содержание олова (27…29,5%) , во-вторых, наличие в нем сульфидов меди и железа усложняет металлургическую переработку концентратаов и, в-третьих, близость флотационных совйств станина к сульфидам затрудняет из разделение при флотации. Состав оловянных концентратов, получаемых на обогатительных фабриках, различен. Из богатых оловянных россыпей выделяются гравитационные концентраты, содержащие ло 60% олова, а шламовые концентраты, получаемые как гравитационными, так и флотационными методами могут содержать от 15 до 5% олова.

Оловосодержащие месторождения подразделяются на россыпные и коренные. Россыпные месторождения олова являются основным источником мировой добычи олова. В россыпях сосредоточено около 75% мировых запасов олова.Коренные оловянные месторождения имеют сложный вещественный состав, в зависимости от которого они подразделяются на кварц- касситеритовые, сульфидно-кварц-касситеритовые и сульфидно-касситеритовые.

Кварц-касситеритовые руды обычно являются комплексными оловянно-вольфрамовыми. Касситерит в этих рудах представлен крупно- , средне- и мелквкрапленными в кварце кристаллами (от 0,1 до 1 мм м более). В этих рудах помимо кварца и касситерита обычно присутствут полевой шпат, турмалин, слюды, вольфрамит или шеелит, и сульфиды. В сульфидно-касситеритовых рудах преобладают сульфиды - пирит, пирротин, арсенопирит, галенит, сфалерит и станин. Содержатся также минералы железа, хлорит и турмалин.

Оловянные россыпи и руды обогащаются в основном гравитационными методами с использованием отсадочных машин, концентрационных столов, винтовых сепараторов и шлюзов. Россыпи обычно значительно проще обогащаются гравитационными методами, чем руды коренных месторождений, т.к. они не требуют применения дорогостоящих процессов дробления и измельчения. Доводка черновых гравитационных концентратов осуществляется магнитными, электрическими и другими методами.

Обогащение на шлюзах применяется при крупности зерен касситерита более 0,2 мм, т.к. более мелкие зерна плохо улавливаются на шлюзах и извлечение их не превышщает 50…60%. Более эффективными аппаратами являются отсадочные машины, которые устанавливаются для первичного обогащения и позволяют извлекать до 90% касситерита. Доводка грубых концентратов осуществляется на концентрационных столах (рис. 217).

Рис.217.Схема обогащения оловянных россыпей

Первичное обогащение россыпей осуществляется также на драгах, в том числе и морских, где для промывки песков устанавливаются барабанные грохоты с отверстиями размером 6…25 мм в зависимости от распределения касситерита по классам крупности и промывистости песков. Для обогащения подрешетного продукта грохотов применяются отсадочные машины различных конструкций обычно с искусственной постелью. Устанавливаются также шлюзы. Первичные концентраты подвергаются перечистным операциям на отсадочных машинах. Доводка, как правило проводится на береговых доводочных кстановках. Извлечение касситерита из россыпей обычно составляет 90…95%.

Обогащение коренных оловянных руд, отличающихся сложностью вещественного состава и неравномерной вкрапленностью касситерита, осуществляется по более сложным многостадиальным схемама с использованием не только гравитационных методов, но и флотогравитации, флотации, магнитной сепарации.

При подготовке оловянных руд к обогащению необходимо учитывать способность касситерита к ошламованию вследствие его крупности. Более 70% потерь олова при обогащения приходится на ошламованный касситерит, который уносится со сливами гравитационных аппаратов. Поэтому измельчение оловянных руд проводится в стержневых мельницах, которые работают в замкнутом цикле с грохотами. На некоторых фабриках в голове процесса применяется обогащение в тяжелых суспензиях, что позволяет выделить в отвальные зхвосты до 30…35% минералов вмещающих пород, снизить расходы на измельчение и повысить извлечение олова.

Для выделения в голове процесса крупнозернистого косситерита применяется отсадка при крупности питания ее от 2…3 до 15…20 мм. Иногда вместо отсадочных машин при крупности материала минус 3+ 0,1 мм устанавливаются винтовые сепараторы, а при обогащении материала крупностью 2…0,1 мм применяют концентрационные столы.

Для руд с неравномерной вкрапленностью касситерита применяются многостадиальные схемы с последовательным доизмельчением не только хвостов обогащения, но и бедных концентратов и промпродуктов. В оловянной руде, которая обогащается по схеме, представленной на рис.218, касситерит имеет крупность от 0,01 до 3 мм.

Рис. 218. Схема гравитационного обогащения коренных оловянных руд

В руде присутствуют также оксиды железа, сульфиды (арсенопирит, халькопирит, пирит, станин, галенит), вольфрамит. Нерудная часть представлена кварцем, турмалином, хлоритом, серицитом и флюоритом.

Первая стадия обогащения проводится в отсадочных машинах при крупности руды 90% минус 10 мм с выделением грубого оловянного концентрата. Затем после доизмельчения хвостов первой стадии обогащения и гидравлической классификации по равнопадаемости осуществляется обогащение на концентрационных столах. Получаемый по такой схеме оловянный концентрат содержит 19…20% олова при извлечении 70…85% и направляется на доводку.

При доводке из грубых оловянных концентратов удаляются сульфидные минералы, минералы вмещающих пород, что позволяет повысить содержание олова до кондиционного.

Крупновкрапленные сульфидные минералы крупностью 2…4 мм удаляются флотогравитацией на концентрационных столах, перед которой концентраты обрабатываются серной кислотой (1,2…1,5 кг/т), ксантогенатом (0,5 кг/т) и керосином (1…2 кг/т).

Из шламов гравитационного обогащения касситерит извлекается флотацией с применением селективных реагентов- собирателей и депрессоров. Для руд сложного минерального состава, содержащих значительные количества турмалина, гидроксидов железа применение жирнокислотных собирателей позволяет получать бедные оловянные концентраты, содержащие не более 2…3% олова. Поэтому при флотации касситерита применяются такие селективные собиратели, как Аспарал – Ф или аэрозоль -22 (сукцинаматы), фосфоновые кислоты и реагент ИМ-50 (алкилгидроксамовые кислоты и их соли). Для депрессии минералов вмещающих пород применяется жидкое стекло, щавелевая кислота.

Перед флотацией касситерита производится удаление из шламов материала крупностью минус 10…15 мкм, затем из проводится флотация сульфидов, из хвостов которой при рН 5 при подаче щавелевой кислоты, жидкого стекла и реагента Аспарал- Ф (140…150 г/т), подаваемого в качестве собирателя, флотируется касситерит (рис. 219). Получаемый флотационный концентрат содержит до 12% олова при извлечении от операции до 70…75% олова.

Иногда для извлечения касситерита из шламов используются орбитальные шлюзв Бартлес – Мозли и концентраторы Бартлес – Кросбелт. Получаемые на этих аппаратах черновые концентраты, содержащие 1…2,5% олова, направляются для доводки на шламовые концентрационные столы с получением товарных шламовых оловянных концентратов.

Вольфрам в рудах представлен более широкой гаммой минералов, имеющих промышленное значение, чем олово. Из 22 вольфрамовых минералов, известных в настоящее время, основными являются четыре: вольфрамит (Fe,Mn)WO 4 (плотность 6700…7500 кг/м 3), гюбнерит MnWO 4 (плотность 7100 кг/м 3), ферберит FeWO 4 (плотность 7500 кг/м 3) и шеелит CаWO 4 (плотность 5800…6200 кг/м 3). Кроме этих минералов практическое значение имеет молибдошеелит, представляющий собой шеелит и изоморфной примесью молибдена (6…16%). Вольфрамит, гюбнерит и ферберит являются слабомагнитными минералами, в виде примесей в них содержатся магний, кальций, тантал и ниобий. Вольфрамит часто в рудах встречается вместе с касситеритом, молибденитом и сульфидными минералами.

К промышленным типам вольфрамсодержаших руд жильные кварц-вольфрамитовые и кварц-касситерито-вольфрамитовые, штокверковые, скарновые и россыпные. В месторождениях жильного типа содержаться вольфрамит, гюбнерит и шеелит, а также минералы молибдена, пирит, халькопирит, минералы олова, мышьяка, висмута и золота. В штокверковых местороджениях содержание вольфрама в 5…10 раз мешьше, чем в жильных, но они имеют большие запасы. В скарновых рудах наряду с вольфрамом, представленным в основном шеелитом, содержатся молибден и олово. Россыпные месторождения вольфрама имеют небольшие запасы, однако играют в добыче вольфрама значительную роль Промышленное содержание триоксида вольфрама в россыпях (0,03…0,1%) значительно ниже, чем в коренных рудах., ноих разработка значительно проще и эвкономически выгоднее. В этих россыпях наряду с вольфрамитом и шеелитом содержится также касситерит.

Качество вольфрамовых концентратов зависит от вещественного состава обогащаемой руды и и тех требований, которые предъявляются к ним при использовании в различных отрослях промышленности. Так для производства ферровольфрама концентрат должен содержать не менее 63% WO 3 , вольфрамито-гюбнеритовый концентрат для производства твердых сплавов должен содержать не менее 60% WO 3 . Шеелитовые концентраты обычно содержать 55% WO 3 . Основными вредными примесями в вольфрамовых концентратах являются кремнезем, фосфор, сера, мышьяк, олово, медь, свинец, сурьма и висмут.

Вольфрамовые россыпи и руды обогащаются, как и оловянные, в две стадии – первичное гравитационное обогащение и доводка черновых концентратов различными методами. При невысоком содержании триоксида вольфрама в руде (0,1…0,8%) и высокими требованиями к качеству концентратов, общая степень обогащения составляет от 300 до 600. Такая степень обогащения может быть достигнута только при сочетании различных методов, начиная с гравитационных и кончая флотацией.

Кроме того вольфрамитовые россыпи и коренные руды обычно содержат и другие тяжелые минералы (касситерит, танталит-колумбит, магнетит, сульфиды), поэтому при первичном гравитационном обогащении выделяется коллективный концентрат, содержащие от 5 до 20%WO 3 . При доводке этих коллективных концентратов получают кондиционные мономинеральные концентраты, для чего применяются флотогравитация и флотация сульфидов, магнитная сепарация магнетита и вольфрамита. Возможно также применение электрической сепарации,обогащения на концентрационных столах и даже флотация минералов смещающих пород.

Большая плотность вольфрамовых минералов позволяет эффективно применять для их извлечения гравитационные методы обогащения: в тяжелых суспензиях, на отсадочных машинах, концентрационных столах, винтовых и струйных сепараторах. При обогащении и сособенно при доводке коллективных гравитационных концентратов широко применяется сагнитная сепарация. Вольфрамит обладает магнитными свойствами и поэтому отделяется в сильномагнитном поле, например, от немагнитного касситерита.

Исходная вольфрамовая руда, также как и оловянная, дробится до крупности минус 12+ 6 мм и обогащается отсадкой, где выделяется крупновкрапленный вольфрамит и часть хвостов с отвальным содержанием триоксида вольфрама. После отсадки руда поступает на измельчение в стержневые мельницы, в которых измельчается до крупности минус 2+ 0,5 мм. Во избежание излишнего шламовобразования измельчение проводится в две стадии. После измельчения руда подвергается гидравлической классификации с выделением шламов и обогащением песковых фракций на концентрационных столах. Получаемые на столах промпродукты и хвосты доизмельчаются и направляются на концентрационные столы. Хвосты также последовательно доизмельчаются и обогащаются на концентрационных столах. Практика обогащение показывает, что извлечение вольфрамита, гюбнерита и ферберита гравитационными методами достигает 85%, в то время как шеелит, скланный к ошламованию извлекается гравитационными методами только на 55…70%.

При обогащении тонковкрапленных вольфрамитовых руд, содержащих всего 0,05…0,1% триоксида вольфрама, применяется флотация.

Особенно широко применяется флотация для извлечения шеелита из скарновых руд, в которых присутствуют кальцит, доломит, флюорит и барит, флотируемые теми же собирателями, что и шеелит.

Собирателями при флотации шеелитовых руд являются жирные кислоты типа олеиновой, которая применяется при температуре не менее 18…20°С в виде эмульсии, приготовленной в мягкой воде. Часто олеиновую кислоту перед подачей в процесс омыляют в горячем растворе кальцинированной соды при соотношении 1:2. Вместо олеиновой кислоты применяют также талловое масло, нафтеновые кислоты и т.п.

Флотацией очень трудно отделить шеелит от минералов щелочноземельных металлов, содержащих кальций, барий и оксиды железа. Шеелит, флюорит, апатит и кальцит содержат в кристаллической решетке катионы кальция, которые обеспечивают химическую сорбцию жирнокислотного собирателя. Поэтому селективная флотация этих минералов от шеелита возможнав узких пределах рН с применением таких депрессоров, как жидкое стекло, кремнефтористый натрий, сода, серная и плавиковая кислота.

Депрессирующее действие жидкого стекла при флотации кальцийсодержащих минералов олеиновой кислотой заключается в десорбции кальциевых мыл, образующихся на поверхности минералов. При этом флотируемость шеелита не изменяется, а флотируемость других кальцийсодержащих минералов резко ухудшается. Повышение температуры до 80…85°С уменьшает время контактирования пульпы с раствором жидкого стекла с 16 часов до 30…60 минут. Расход жидкого стекла составляет около 0,7 кг/т. Процесс селективной шеелитовой флотации, представленный на рис.220, с использованием процесса пропарки с жидким стеклом, называется методом Петрова.

Рис. 220. Схема флотации шеелита из вольфрамо-молибденовых руд с использованием

доводки по методу Петрова

Концентрат основной шеелитовой флотации, которая проводится при температуре 20°С в присутствии олеиновой кислоты, содержит 4…6% триоксида вольфрама и 38…45% оксида кальция в виде кальцита, флюорита и апатита. Концентрат перед пропаркой сгущается до 50…60% твердого. Пропарка осуществляется последовательно в двух чанах в 3%-ном растворе жидкого стекла при температуре 80…85°С в течение 30…60 минут. После пропарки перечистные операции проводятся при температуре 20…25°С. Получаемый шеелитовый концентрат может содержать до 63…66% триоксида вольфрама при его извлечении 82…83%.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: