Вывод формулы эдс индукции в движущихся проводниках. Эдс индукции в движущихся проводниках. ЭДС индукции в плоском витке, вращающемся в магнитном поле

Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.

На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует сила Лоренца:

Fл = /q/vB sin a

Её направление можно определить по правилу левой руки.

Под действием силы Лоренца внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l
Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.

Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.

Готовимся к проверочной работе!

1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?

2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.

3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?

4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?

5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.

6. Указать правильное направление индукционного тока в контурах.




Электромагнитное поле - Класс!ная физика

Или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются один относительно другого;

  • Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС (взаимоиндукция);
  • Когда изменяющееся магнитное поле индуктирует в енм самом ЭДС (самоиндукция).
  • Таким образом, всякое изменение во времени величины , пронизывающего замкнутый контур (виток, рамку), сопровождается появлением в проводнике индуктированной ЭДС.

    A = U × I × t = I ² × r × t (Дж) .

    Затрачиваемая мощность будет равна:

    P эл = U × I = I ² × r (Вт) ,

    откуда определяем ток в цепи:

    (1)

    Однако нам известно, что проводник с током, помещенный в магнитное поле, будет испытывать силу со стороны поля, стремящуюся перемещать в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные силовые линии поля и в нем по закону электромагнитной индукции возникнет индуктированная ЭДС. Направление этой ЭДС, определенное по правилу правой руки, будет обратным току I . Назовем ее обратной ЭДС E обр. Величина E обр согласно закону электромагнитной индукции будет равна:

    E обр = B × l × v (В) .

    По для замкнутой цепи имеем:

    U - E обр = I × r

    U = E обр + I × r , (2)

    откуда ток в цепи

    (3)

    Сравнивая выражения (1) и (3), видим, что в проводнике, движущемся в магнитном поле, при одних и тех же значениях U и r ток будет меньше, чем при неподвижном проводнике.

    Умножая полученное выражение (2) на I , получим:

    U × I = E обр × I + I ² × r .

    Так как E обр = B × l × v , то

    U × I = B × l × v × I + I ² × r .

    Учитывая, что B × l × I = F и F × v = P мех, имеем:

    U × I = F × v + I ² × r

    P = P мех + P эм.

    Последнее выражение показывает, что при движении проводника с током в магнитном поле мощность источника напряжения преобразуется в тепловую и механическую мощности.

    Возникновение в проводнике ЭДС индукции

    Если поместить в проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет , называемая ЭДС индукции .

    ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

    Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

    Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

    Электромагнитная индукция - это обратный процесс, т. е. превращение механической энергии в электрическую.

    Явление электромагнитной индукции нашло широчайшее применение в . На использовании его основано устройство различных электрических машин.

    Величина и направление ЭДС индукции

    Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

    Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

    Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

    Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

    Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

    Зависимость эта выражается формулой Е = Blv,

    где Е - ЭДС индукции; В - магнитная индукция; I - длина проводника; v - скорость движения проводника.

    Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

    Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

    Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

    Правило правой руки

    ЭДС индукции в катушке

    Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

    При движении внутри постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

    Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

    И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

    Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

    Закон Ленца для электромагнитной индукции

    Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

    Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле - поле тока.

    Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

    Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.


    При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

    Индукционные токи в массивных проводниках

    Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые распространяются по массивному проводнику и накоротко замыкаются в нем.

    Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

    Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа , и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

    При движении прямолинейного проводника в магнитном поле на концах проводника возникает э. д. с. индукции. Ее можно вычислить не только по формуле , но и по формуле э. д. с.

    индукции в прямолинейном проводнике. Она выводится так. Приравняем формулы (1) и (2) § 97:

    BIls = EIΔt, отсюда


    где s / Δt = v есть скорость перемещения проводника. Поэтому э. д. с. индукции при движении проводника перпендикулярно к силовым линиям магнитного поля

    E = Blv.

    Если проводник движется со скоростью v (рис. 148, а), направленной под углом α к линиям индукции, то скорость v разлагается на составляющие v 1 и v 2 . Составляющая направлена вдоль линий индукции и при движении проводника не вызывает в нем э. д. с. индукции. В проводнике э. д. с. индуктируется только за счет составляющей v 2 = v sin α , направленной перпендикулярно к линиям индукции. В этом случае э. д. с. индукции будет

    Е = Вlv sin α.

    Это и есть формула э. д. с. индукции в прямолинейном проводнике.

    Итак, при движении прямолинейного проводника в магнитном поле в нем индуктируется э. д. с., величина которой прямо пропорциональна активной длине проводника и нормальной составляющей скорости его движения.

    Если вместо одного прямого проводника взять рамку, то при ее вращении в однородном магнитном поле возникнет э. д. с. в двух ее сторонах (см. рис. 138). В этом случае э. д. с. индукции будет Е = 2 Blv sin α . Здесь l - длина одной активной стороны рамки. Если последняя состоит из n витков, то в ней возникает э. д. с. индукции

    E = 2nBlv sin α.

    То, что э. д. с. индукции зависит от скорости v вращения рамки и от индукции В магнитного поля, можно видеть на таком опыте (рис. 148, б). При медленном вращении якоря генератора тока лампочка горит тускло: возникла малая э. д. с. индукции. При увеличении скорости вращения якоря лампочка горит ярче: возникает большая э. д. с. индукции. При той же скорости вращения якоря удалим один из магнитов, уменьшив тем самым индукцию магнитного поля. Лампочка горит тускло: э. д. с. индукции уменьшилась.

    Задача 35. Прямолинейный проводник длиной 0,6 м гибкими проводниками присоединен к источнику тока, э. д. с. которого 24 в и внутреннее сопротивление 0,5 ом. Проводник находится в однородном магнитном поле с индукцией 0,8 тл, линии индукции которого направлены к читателю (рис. 149). Сопротивление всей внешней цепи 2,5 ом . Определить силу тока в проводнике, если он движется перпендикулярно к линиям индукции со скоростью 10 м / сек. Чему равна сила тока в неподвижном проводнике?

    В металлическом проводнике большое количество свободных электронов, которые хаотично движутся. Если двигать проводник в магнитном поле перпендикулярно силовым линиям, то поле будет отклонять движущиеся вместе с проводником электроны, и они начнут двигаться, то есть возникнет электродвижущая сила (ЭДС) . Это называется электромагнитной индукцией (индуцировать - наводить).

    Под действием ЭДС электроны будут двигаться и скапливаться на одном конце проводника, а на другом будет недостаток электронов, то есть положительный заряд и возникнет разность потенциалов , илиэлектрическое напряжение.

    Если соединить такой проводник с внешней цепью (замкнуть путь), то под влиянием разности потенциалов будет протекать ток.

    Если проводник двигать вдоль силовых линий, то поле на заряды действовать не будет, ЭДС, напряжение не возникнет, ток протекать не будет.

    Такая ЭДС называется ЭДС индукции . Она определяется по закону Фарадея :

    · ЭДС индукции равна произведению скорости перемещения проводника V , магнитной индукции В и активной длины проводника L

    Направление ее определяется по правилу правой руки :

    ·
    Если правую руку расположить в магнитном поле так, что силовые линии будут входить в ладонь, а отогнутый большой палец покажет направление движения проводника, то четыре вытянутых пальца покажут направление ЭДС.

    ЭДС будет наводиться при любом пересечении проводника и магнитного поля. То есть можно двигать проводник, можно поле, а можно магнитное поле изменять.

    Тогда ЭДС определяется по Максвеллу :

    ЭДС, наведенная в контуре в результате пересечения его изменяющимся магнитным потоком, равна скорости изменения этого потока.

    е= - ΔФ/Δt

    Где ΔФ=Ф 1 - Ф 2 изменение магнитного потока, Вб

    Δt – время, за которое изменился магнитный поток, сек.

    Правило Ленца : индуцированная ЭДС имеет такое направление, что созданный ею ток противодействует изменению магнитного потока.

    ЭДС самоиндукции.

    Если в проводнике изменяется ток, изменяется и магнитный поток им созданный. Распространяясь в пространстве, этот магнитный поток пересекает не только соседние проводники, но и свой собственный, а значит, в собственном проводнике наводится ЭДС. Она называется ЭДС самоиндукции .

    ЭДС самоиндукции – это ЭДС, возникающая в проводнике, при изменении собственного тока и магнитного потока.

    Она возникает при всяком изменении тока и направлена так, чтобы не дать ему измениться. При уменьшении тока она направлена вместе с ним и поддерживает ток, при увеличении тока, направлена против, и ослабляет его.

    Способность проводника (катушки) создавать ЭДС самоиндукции, называется индуктивностью L .

    Она зависит от:

    · Квадрата числа витков катушки w

    · магнитной проницаемости µ

    · сечения катушки S

    · длины катушки l

    L=(w 2 μS)/l , Гн(Генри)

    ЭДС самоиндукции:

    e L =-Δi/Δt , В

    Где Δi/Δt – скорость изменения тока.

    Эта ЭДС, препятствуя изменению тока мешает ему протекать, а значит создает сопротивление переменному току.

    Коммутационные перенапряжения.

    Это перенапряжения в цепях с большой индуктивностью при коммутации. В результате может возникнуть электрическая дуга, или искра, оплавляются контакты. Поэтому применяются меры дугогашения.

    Взаимоиндукция.

    ЭДС взаимоиндукции – это ЭДС, возникающая, в катушке при пересечении ее изменяющимся магнитным потоком другой катушки.

    На этом принципе работает трансформатор.

    Наведенное напряжение – это напряжение, возникающее в металлических конструкциях в результате пересечения их с переменным магнитным полем, созданным переменным током.

    Таким образом, за счет магнитного поля возникают три вида ЭДС:

    1. ЭДС индукции . Возникает при движении проводника в постоянном магнитном поле, или при движении поля относительно проводника.

    2. ЭДС самоиндукции . Возникает из-за пересечения проводника собственным изменяющимся магнитным полем.

    3. ЭДС взаимоиндукции . Возникает при пересечении проводника чужим изменяющимся магнитным полем.

    Вихревые токи.

    По другому: токи Фуко, индукционные токи.

    Это токи, возникающие в массивных стальных частях электроустановок (сердечниках, корпусах), из-за пересечения их изменяющимся магнитным потоком и наведения ЭДС. В результате малого сопротивления, возникшие короткозамкнутые токи сильно нагревают машины.

    Потери на вихревые токи – это потери мощности, идущие на нагрев.

    Для снижения потерь уменьшают вихревые токи следующим образом:

    1. Сердечники электромашин выполняют шихтованными, то есть набирают из листов электротехнической стали, изолированных лаком. Тем самым уменьшают сечение, а значит, увеличивают сопротивление току.

    2. В сталь добавляют кремний, обладающий большим сопротивлением.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: