Физические свойства воздуха: плотность, вязкость, удельная теплоемкость. Динамическая и кинематическая вязкость воздуха при различных температурах

1. Расход тепла на подогрев приточного воздуха

Q т =L∙ρ возд. ∙с возд. ∙(t вн. - t нар.),

где:

ρ возд. – плотность воздуха. Плотность сухого воздуха при 15°С на уровне моря составляет 1,225 кг/м³;
с возд. – удельная теплоемкость воздуха, равная 1 кДж/(кг∙К)=0,24 ккал/(кг∙°С);
t вн. – температура воздуха на выходе из калорифера, °С;
t нар. – температура наружного воздуха, °С (темп-ра воздуха наиболее холодной пятидневки обеспеченностью 0,92 по Строительной климатологии).

2. Расход теплоносителя на калорифер

G= (3,6∙Q т)/(с в ∙(t пр -t обр)),

где:
3,6 - коэффициент перевода Вт в кДж/ч (для получения расхода в кг/ч);
G - расход воды на теплоснабжение калорифера, кг/ч;
Q т – тепловая мощность калорифера, Вт;
с в – удельная теплоемкость воды, равная 4,187 кДж/(кг∙К)=1 ккал/(кг∙°С);
t пр. – температура теплоносителя (прямая линия), °С;
t нар. – температура теплоносителя (обратная линия), °С.

3. Выбор диаметра труб для теплоснабжения калорифера

Расход воды на калорифер , кг/ч

4. I-d диаграмма процесса нагрева воздуха

Процесс нагрева воздуха в калорифере протекает при d=const (при неизменном влагосодержании).

1

Согласно оценкам Международного энергетического агентства, приоритетным направлением снижения выбросов диоксида углерода автомобилями является повышение их топливной экономичности. Задача снижения выбросов СО2 путем повышения топливной экономичности автотранспорта является для мирового сообщества одной из приоритетных, учитывая необходимость рационального использования не возобновляемых источников энергии. С этой целью постоянно ужесточаются международные стандарты, лимитирующие показатели пуска и эксплуатации двигателя в условиях низких и даже высоких температур окружающей среды. В статье рассмотрен вопрос топливной экономичности двигателей внутреннего сгорания в зависимости от температуры, давления, влажности окружающего воздуха. Приведены результаты исследования по поддержанию постоянной температуры во впускном коллекторе ДВС с целью экономии топлива и определению оптимальной мощности нагревательного элемента.

мощность нагревательного элемента

температура окружающего воздуха

подогрев воздуха

экономия топлива

оптимальная температура воздуха во впускном коллекторе

1. Автомобильные двигатели. В.М. Архангельский [и др.]; отв. ред. М.С. Ховах. М.: Машиностроение, 1977. 591 с.

2. Карнаухов В.Н., Карнаухова И.В. Определение коэффициента наполнения в ДВС // Транспортные и транспортно-технологические системы, материалы Международной научно-технической конференции, Тюмень, 16 апреля 2014г. Тюмень: Изд-во ТюмГНГУ, 2014.

3. Ленин И.М. Теория автомобильных и тракторных двигателей. М.: Высшая школа, 1976. 364 с.

4. Ютт В.Е. Электрооборудование автомобилей. М: Изд-во Горячая линия-Телеком, 2009. 440 с.

5. Ютт В.Е., Рузавин Г.Е. Электронные системы управления ДВС и методы их диагностирования. М.: Изд-во Горячая линия-Телеком, 2007. 104 с.

Введение

Развитие электроники и микропроцессорной техники привело к широкому внедрению ее на автомобили. В частности, к созданию электронных систем автоматического управления двигателем, трансмиссией ходовой частью и дополнительным оборудованием. Применение электронных систем для управления (ЭСУ) двигателем позволяет снизить расход топлива и токсичности отработанных газов с одновременным повышением мощности двигателя, повысить приемистость и надежность холодного пуска. Современные ЭСУ объединяют в себе функции управления впрыском топлива и работой системы зажигания. Для реализации программного управления в блоке управления записывается зависимость длительности впрыска (количество подаваемого топлива) от нагрузки и частоты вращения коленчатого вала двигателя. Зависимость задается в виде таблицы, разработанной на основе всесторонних испытаний двигателя аналогичной модели. Подобные таблицы используются и для определения угла зажигания. Эта система управления двигателем используется во всем мире, потому что выбор данных из готовых таблиц является наиболее быстрым процессом, чем выполнение вычислений при помощи ЭВМ. Полученные по таблицам значения корректируются бортовыми компьютерами автомобилей в зависимости от сигналов датчиков положения дроссельной заслонки, температуры воздуха, его давления и плотности. Основным отличием данной системы, применяемой в современных автомобилях, является отсутствие жесткой механической связи между дроссельной заслонкой и педалью акселератора, ею управляющей. В сравнении с традиционными системами, ЭСУ позволяет снизить расход топлива на различных автомобилях до 20 % .

Низкое потребление топлива достигается путем различной организации двух основных режимов работы ДВС: режима малой нагрузки и режима высокой нагрузки. При этом двигатель в первом режиме работает с неоднородной смесью, большим избытком воздуха и поздним впрыском топлива, благодаря чему достигается расслоение заряда из смеси воздуха, топлива и оставшихся отработанных газов, в результате чего он работает на бедной смеси. На режиме высокой нагрузки двигатель начинает работать на гомогенной смеси, что приводит к уменьшению выбросов вредных веществ в отработанных газах. Токсичность выброса при применении ЭСУ дизельными двигателями при пуске позволяют снизить различные свечи накаливания. ЭСУ получает информацию о температуре воздуха на впуске, давлении, расходе топлива и положении коленчатого вала. Блок управления обрабатывает информацию от датчиков и, используя характеристические карты, выдает значение угла опережения подачи топлива. С целью учета изменения плотности поступающего воздуха при изменении его температуры датчик расхода оснащен терморезистором. Но в результате колебаний температуры и давления воздуха во впускном коллекторе, несмотря на вышеперечисленные датчики, происходит мгновенное изменение плотности воздуха и, как следствие, уменьшение или увеличение поступления кислорода в камеру сгорания.

Цель, задачи и метод исследования

В Тюменском государственном нефтегазовом университете были проведены исследования с целью поддержания постоянной температуры во впускном коллекторе ДВС КАМАЗ-740, ЯМЗ-236 и D4FB (1.6 CRDi) автомобиля Киа Сид, MZR2.3-L3T - Мазда CX7. При этом температурные колебания воздушной массы учитывались температурными датчиками. Обеспечение нормальной (оптимальной) температуры воздуха во впускном коллекторе должно выполняться при всех возможных эксплуатационных режимах: пуске холодного двигателя, работе на малых и высоких нагрузках, при работе в условиях низких температур окружающей среды.

В современных быстроходных двигателях суммарная величина теплообмена оказывается незначительной и составляет около 1 % от всего количества тепла, выделенного при сгорании топлива. Увеличение температуры подогрева воздуха во впускном коллекторе до 67 ˚С приводит к уменьшению интенсивности теплообмена в двигателях, то есть уменьшению ΔТ и увеличению коэффициента наполнения. ηv (рис.1)

где ΔТ - разность температур воздуха во впускном коллекторе (˚К), Тп - температура нагрева воздуха во впускном коллекторе, Тв - температура воздуха во впускном коллекторе.

Рис. 1. График влияния температуры подогрева воздуха на коэффициент наполнения (на примере двигателя КАМАЗ-740)

Однако подогрев воздуха более 67 ˚С не приводит к росту ηv в связи с тем, что плотность воздуха при этом уменьшается. Полученные экспериментальные данные показали, что воздух у дизельных двигателей без наддува во время его работы имеет интервал температур ΔТ=23÷36˚С. Испытаниями было подтверждено, что для ДВС, работающих на жидком топливе, разница в величине коэффициента наполнения ηv, рассчитанного из условий, что свежим зарядом является воздух или топливовоздушная смесь, незначительна и составляет менее 0,5 % , поэтому для всех типов двигателей ηv определяется по воздуху.

Изменение температуры, давления и влажности воздуха сказывается на мощности любого двигателя и колеблется в интервале Ne=10÷15% (Ne - эффективная мощность двигателя).

Повышение аэродинамического сопротивления воздуха во впускном коллекторе объясняется следующими параметрами:

    Повышенной плотностью воздуха.

    Изменением вязкости воздуха.

    Характером поступления воздуха в камеру сгорания.

Многочисленными исследованиями доказано, что высокая температура воздуха во впускном коллекторе увеличивает расход топлива незначительно. В то же время низкая температура увеличивает его расход до 15-20 %, поэтому исследования проводились при температуре наружного воздуха -40 ˚С и его нагреве до +70 ˚С во впускном коллекторе. Оптимальной по расходу топлива является температура воздуха во впускном коллекторе 15÷67 ˚С.

Результаты исследования и анализ

Во время испытаний была определена мощность нагревательного элемента для обеспечения подержания определенной температуры во впускном коллекторе ДВС. На первой стадии определено количество тепла, необходимого для нагрева воздуха массой 1 кг при постоянной температуре и давлении воздуха, для этого примем: 1. Температура окружающего воздуха t1=-40˚C. 2. Температура во впускном коллекторе t2=+70˚С.

Количество необходимого тепла находим по уравнению:

(2)

где СР - массовая теплоемкость воздуха при постоянном давлении, определяется по таблице и для воздуха при температуре от 0 до 200 ˚С.

Количество тепла для большей массы воздуха определяется по формуле:

где n - объем воздуха в кг, необходимого для нагрева при работе двигателя.

При работе ДВС на оборотах более 5000 об/мин расход воздуха легковых автомобилей достигает 55-60 кг/час, а грузовых - 100 кг/час. Тогда:

Мощность нагревателя определяем по формуле:

где Q - количество тепла, затраченное на нагревание воздуха в Дж, N - мощность нагревательного элемента в Вт, τ - время в сек.

Необходимо определить мощность нагревательного элемента в секунду, поэтому формула примет вид:

N=1,7 кВт - мощность нагревательного элемента для легковых автомобилей и при расходе воздуха более 100 кг/час для грузовых - N=3,1 кВт.

(5)

где Ттр - температура во впускном трубопроводе, Ртр - давление в Па во впускном трубопроводе, Т0 - , ρ0 - плотность воздуха, Rв - универсальная газовая постоянная воздуха.

Подставляя формулу (5) в формулу (2), получаем:

(6)

(7)

Мощность нагревателя в секунду определим по формуле (4) с учетом формулы (5):

(8)

Результаты расчетов количества тепла, необходимого для нагрева воздуха массой 1 кг со средним расходом воздуха для легковых автомобилей более V=55кг/час и для грузовых - более V=100кг/час, представлены в таблице 1.

Таблица 1

Таблица определения количества тепла для нагрева воздуха во впускном коллекторе в зависимости от наружной температуры воздуха

V>55кг/час

V>100кг/час

Q, кДж/сек

Q, кДж/сек

На основании данных таблицы 1 построен график (рис. 2) количества тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры. На графике видно, что чем выше температура воздуха, тем меньшее количество тепла необходимо для поддержания оптимальной температуры во впускном коллекторе, вне зависимости от объема воздуха.

Рис. 2. Количество тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры

Таблица 2

Расчет времени нагрева различных объемов воздуха

Q1, кДж/сек

Q2, кДж/сек

Время определено по формуле τсек=Q/N при температуре наружного воздуха >-40˚С,Q1 при расходе воздуха V>55 кг/час и Q2- V>100 кг/час

Далее по таблице 2 построен график времени нагрева воздуха до +70 ˚С в коллекторе ДВС при различной мощности нагревателя. На графике видно, что независимо от времени нагрева при повышении мощности нагревателя время нагрева разных объемов воздуха выравнивается.

Рис. 3. Время нагрева воздуха до температуры +70 ˚С.

Заключение

На основании расчетов и экспериментов установлено, что наиболее экономичным является использование нагревателей переменной мощности для поддержания заданной температуры во впускном коллекторе с целью получения экономии топлива до 25-30 %.

Рецензенты :

Резник Л.Г., д.т.н., профессор кафедры «Эксплуатация автомобильного транспорта» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Мерданов Ш.М., д.т.н., профессор, заведующий кафедрой «Транспортные и технологические системы» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Захаров Н.С., д.т.н., профессор, действующий член Российской академии транспорта, заведующий кафедрой «Сервис автомобилей и технологических машин» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Библиографическая ссылка

Карнаухов В.Н. ОПТИМИЗАЦИЯ МОЩНОСТИ НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ПОДДЕРЖАНИЯ ОПТИМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА ВО ВПУСКНОМ КОЛЛЕКТОРЕ ДВС // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13575 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Рассмотрены основные физические свойства воздуха: плотность воздуха, его динамическая и кинематическая вязкость, удельная теплоемкость, теплопроводность, температуропроводность, число Прандтля и энтропия. Свойства воздуха даны в таблицах в зависимости от температуры при нормальном атмосферном давлении.

Плотность воздуха в зависимости от температуры

Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа . Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.

На практике, чтобы узнать какова плотность воздуха при различных температурах , удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).

Плотность воздуха в зависимости от температуры — таблица
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-50 1,584 20 1,205 150 0,835 600 0,404
-45 1,549 30 1,165 160 0,815 650 0,383
-40 1,515 40 1,128 170 0,797 700 0,362
-35 1,484 50 1,093 180 0,779 750 0,346
-30 1,453 60 1,06 190 0,763 800 0,329
-25 1,424 70 1,029 200 0,746 850 0,315
-20 1,395 80 1 250 0,674 900 0,301
-15 1,369 90 0,972 300 0,615 950 0,289
-10 1,342 100 0,946 350 0,566 1000 0,277
-5 1,318 110 0,922 400 0,524 1050 0,267
0 1,293 120 0,898 450 0,49 1100 0,257
10 1,247 130 0,876 500 0,456 1150 0,248
15 1,226 140 0,854 550 0,43 1200 0,239

При 25°С воздух имеет плотность 1,185 кг/м 3 . При нагревании плотность воздуха снижается — воздух расширяется (его удельный объем увеличивается). С ростом температуры, например до 1200°С, достигается очень низкая плотность воздуха, равная 0,239 кг/м 3 , что в 5 раз меньше ее значения при комнатной температуре. В общем случае, снижение при нагреве позволяет проходить такому процессу, как естественная конвекция и применяется, например, в воздухоплавании.

Если сравнить плотность воздуха относительно , то воздух легче на три порядка — при температуре 4°С плотность воды равна 1000 кг/м 3 , а плотность воздуха составляет 1,27 кг/м 3 . Необходимо также отметить значение плотности воздуха при нормальных условиях. Нормальными условиями для газов являются такие, при которых их температура равна 0°С, а давление равно нормальному атмосферному. Таким образом, согласно таблице, плотность воздуха при нормальных условиях (при НУ) равна 1,293 кг/м 3 .

Динамическая и кинематическая вязкость воздуха при различных температурах

При выполнении тепловых расчетов необходимо знать значение вязкости воздуха (коэффициента вязкости) при различной температуре. Эта величина требуется для вычисления числа Рейнольдса, Грасгофа, Релея, значения которых определяют режим течения этого газа. В таблице даны значения коэффициентов динамической μ и кинематической ν вязкости воздуха в диапазоне температуры от -50 до 1200°С при атмосферном давлении.

Коэффициент вязкости воздуха с ростом его температуры значительно увеличивается. Например, кинематическая вязкость воздуха равна 15,06·10 -6 м 2 /с при температуре 20°С, а с ростом температуры до 1200°С вязкость воздуха становиться равной 233,7·10 -6 м 2 /с, то есть увеличивается в 15,5 раз! Динамическая вязкость воздуха при температуре 20°С равна 18,1·10 -6 Па·с.

При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).

Динамическая и кинематическая вязкость воздуха при различных температурах — таблица
t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с
-50 14,6 9,23 70 20,6 20,02 350 31,4 55,46
-45 14,9 9,64 80 21,1 21,09 400 33 63,09
-40 15,2 10,04 90 21,5 22,1 450 34,6 69,28
-35 15,5 10,42 100 21,9 23,13 500 36,2 79,38
-30 15,7 10,8 110 22,4 24,3 550 37,7 88,14
-25 16 11,21 120 22,8 25,45 600 39,1 96,89
-20 16,2 11,61 130 23,3 26,63 650 40,5 106,15
-15 16,5 12,02 140 23,7 27,8 700 41,8 115,4
-10 16,7 12,43 150 24,1 28,95 750 43,1 125,1
-5 17 12,86 160 24,5 30,09 800 44,3 134,8
0 17,2 13,28 170 24,9 31,29 850 45,5 145
10 17,6 14,16 180 25,3 32,49 900 46,7 155,1
15 17,9 14,61 190 25,7 33,67 950 47,9 166,1
20 18,1 15,06 200 26 34,85 1000 49 177,1
30 18,6 16 225 26,7 37,73 1050 50,1 188,2
40 19,1 16,96 250 27,4 40,61 1100 51,2 199,3
50 19,6 17,95 300 29,7 48,33 1150 52,4 216,5
60 20,1 18,97 325 30,6 51,9 1200 53,5 233,7

Примечание: Будьте внимательны! Вязкость воздуха дана в степени 10 6 .

Удельная теплоемкость воздуха при температуре от -50 до 1200°С

Представлена таблица удельной теплоемкости воздуха при различных температурах. Теплоемкость в таблице дана при постоянном давлении (изобарная теплоемкость воздуха) в интервале температуры от минус 50 до 1200°С для воздуха в сухом состоянии. Чему равна удельная теплоемкость воздуха? Величина удельной теплоемкости определяет количество тепла, которое необходимо подвести к одному килограмму воздуха при постоянном давлении для увеличения его температуры на 1 градус. Например, при 20°С для нагревания 1 кг этого газа на 1°С в изобарном процессе, требуется подвести 1005 Дж тепла.

Удельная теплоемкость воздуха увеличивается с ростом его температуры. Однако, зависимость массовой теплоемкости воздуха от температуры не линейная. В интервале от -50 до 120°С ее величина практически не меняется — в этих условиях средняя теплоемкость воздуха равна 1010 Дж/(кг·град). По данным таблицы видно, что значительное влияние температура начинает оказывать со значения 130°С. Однако, температура воздуха влияет на его удельную теплоемкость намного слабее, чем на вязкость. Так, при нагреве с 0 до 1200°С теплоемкость воздуха увеличивается лишь в 1,2 раза – с 1005 до 1210 Дж/(кг·град).

Следует отметить, что теплоемкость влажного воздуха выше, чем сухого. Если сравнить и воздуха, то очевидно, что вода обладает более высоким ее значением и содержание воды в воздухе приводит к увеличению удельной теплоемкости.

Удельная теплоемкость воздуха при различных температурах — таблица
t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град)
-50 1013 20 1005 150 1015 600 1114
-45 1013 30 1005 160 1017 650 1125
-40 1013 40 1005 170 1020 700 1135
-35 1013 50 1005 180 1022 750 1146
-30 1013 60 1005 190 1024 800 1156
-25 1011 70 1009 200 1026 850 1164
-20 1009 80 1009 250 1037 900 1172
-15 1009 90 1009 300 1047 950 1179
-10 1009 100 1009 350 1058 1000 1185
-5 1007 110 1009 400 1068 1050 1191
0 1005 120 1009 450 1081 1100 1197
10 1005 130 1011 500 1093 1150 1204
15 1005 140 1013 550 1104 1200 1210

Теплопроводность, температуропроводность, число Прандтля воздуха

В таблице представлены такие физические свойства атмосферного воздуха, как теплопроводность, температуропроводность и его число Прандтля в зависимости от температуры. Теплофизические свойства воздуха даны в интервале от -50 до 1200°С для сухого воздуха. По данным таблицы видно, что указанные свойства воздуха существенно зависят от температуры и температурная зависимость рассмотренных свойств этого газа различна.

Температура уходящих газов за котлоагрегатом зависит от вида сжигаемого топлива, температуры питательной воды t n в, расчетной стоимости топливаС т , его приведенной влажности

где

На основании технико-экономической оптимизации, по условию эф­фективности использования топлива и металла хвостовой по­верхности нагрева, а также других условий, получены следующие рекомендации по выбору ве­личины
, приведенной в табл.2.4.

Из табл. 2.4 выбираются меньшие значения оптимальной темпера­туры уходящих газов для дешевых, а большие - для дорогих топлив.

Для котлов низкого давления (Р пе .≤ 3,0 МПа) с хвостовыми поверхностями нагрева температура уходящих газов должна быть не ниже значений» указанных в табл. 2.5, а оптимальное ее значение выбирается на основе технико-экономических расчетов.

Таблица 2.4 – Оптимальная температура уходящих газов для котлов

производительностью свыше 50 т/ч (14 кг/с) при сжигании

малосернистых топлив

Температура питательной воды t n в, 0 С

Приведенная влажность топлива

Таблица 2.5 – Температура уходящих газов для котлов низкого давления

производительностью менее 50 т/ч (14 кг/с)

, 0 С

Угли с приведенной влажностью

и природный газ

Угли с

Мазут высокосернистый

Торф и древесные отходы

Для котлов типа КЕ и ДЕ температура уходящих газов сильно зависит от t n в. При температуре питательной воды t n в =100°С,
, а приt n в = 80 ÷ 90 0 С снижается до значений
.

При сжигании сернистых топлив, особенно высокосернистого мазута, возникает опасность низкотемпературной коррозии воздухоподогревателя при минимальной температуре стенки металлаt ст ниже точки: росы t p дымовых газов. Величинаt p зависит от температуры конденсации водяных паровt к при парциальном давлении их в дымовых газах P H 2 O , приведенного содержания серыS n и золыA n в рабочем топливе

, (2.3)

где
- низшая теплота сгорания топлива, мДж/кг или мДж/м 3 .

Парциальное давление водяных паров равно

(2.4)

где: Р=0,1 МПа – давление дымовых газов на выходе из котла, МПа;

r H 2 O – объемная доля водяных паров в уходящих газах.

Для полного исключения, коррозии при отсутствии специальных мер защиты t ст должна, быть на 5 – 10°С выше t p , однако это приведет к значительному повышению над ее экономическим значением. Поэтому одновременно повышаюти температуру воздуха на входе в воздухоподогреватель.

Минимальная температура стенки, в зависимости от предварительно выбранных значенийиопределяется по формулам: для регенеративных воздухоподогревателей (РВП)

(2.5)

для трубчатых воздухоподогревателей (ТВП)

(2.6)

При сжигании твердых сернистых топлив необходимо температу­ру воздуха на входе в воздухоподогреватель принимать не нижеt к, определяемой в зависимости от P H 2 O .

При использовании высокосернистых мазутов эффективным средст­вом борьбы с низкотемпературной коррозией является сжигание мазу­та с малыми избытками воздуха (= 1,02 ÷ 1,03). Этот метод сжигания практически устраняет полностью низкотемпературную кор­розию и признан наиболее перспективным, однако требует тщательной наладки горелочных устройств и улучшения эксплуатации котлоагрегата.

При установке в холодных ступенях воздухоподогревателя сменяемых кубов ТВП или сменяемой холодной (РВП) набивки допускаются следующие значения температуры входящего воздуха: в регенера­тивных воздухоподогревателях 60 – 70°С, а в трубчатых воздухоподо­гревателях 80 – 90°С.

Для осуществления предварительного подогрева воздуха до зна­чений , перед входом в воздухоподогреватель обычно устанавли­ваются паровые калориферы, обогреваемые отборным паром из турбины. Применяются также и другие методы подогрева воздуха на входе в воздухоподогреватель и меры борьбы с низкотемпературной коррозией, а именно: рециркуляция горячего воздуха на всас вентилятора, уста­новка воздухоподогревателей с промежуточным теплоносителем, газо­вых испарителей и т.п. Для нейтрализации паровH 2 SO 4 применяются присадки различных видов, как в газоходы котлоагрегата, так и в топливо.

Температура подогрева воздуха зависит от вида топлива и характеристики топки. Если высокий подогрев воздуха не требуется по условиям сушки или сжигания топлива, целесообразно устанавливать одноступенчатый воздухоподогреватель. В этом случае оптимальная температура воздуха энергетических котлов в зависимости от температуры питательной воды и уходящих газов ориен­тировочно определяется по формуле

При двухступенчатой компоновке воздухоподогревателя по форму­ле (2.7) определяется температура воздуха за первой ступенью, а во второй ступени воздухоподогревателя производится подогрев воз­духа от этой температуры до температуры горячего воздуха, приня­той согласно табл. 2.6.

Обычно двухступенчатая компоновка воздухоподогревателя в "рас­сечку" со ступенями водяного экономайзера применяется при величине t гв >300°С. При этом температура газов перед "горячей" ступенью воздухоподогревателя не должна превышать 500°С.

Таблица 2.6 – Температура подогрева воздуха для котлоагрегатов

производительностью свыше 75 т/ч (21,2 кг/с)

Характеристики топки

Сорт топлива

"Температура воздуха. °С

1 Топки с твердым шлакоудалением

при замкнутой схеме пылеприготовления

Каменные и тощие угли

Бурые угли фрез.

2 Топки с жидким шлакоудалением, в т.ч. с горизонтальными циклонами и вертикальными предтопками при сушке топлива воздухом и подаче пыли горячим воздухом или сушильным агентом

АШ, ПА бурые угли

Каменные угли и донецкий тощий

3 При сушке топлива газами в замкнутой схеме пылеприготовления, при твердом шлакоудалении

то же при жидком шлакоудалении

Бурые угли

300 – 350 х х

350 – 400 х х

4 При сушке топлива газами в разомкнутой схеме пылеприготовления при твердом шлакоудалении

При жидком шлакоудалении

Для всех

350 – 400 х х

5. Камерные топки

Мазут и природный газ

250 – 300 х х х

х При высоковлажном торфе/W p > 50%/ принимают 400°С;

хх Большее значение при высокой влажности топлива;

ххх Величинаt гв проверяется по формуле .

Проходят через прозрачную атмосферу, не нагревая ее, они достигают земной поверхности, нагревают ее, а от нее в последующем нагревается воздух.

Степень нагрева поверхности, а значит и воздуха, зависят, прежде всего, от широты местности.

Но в каждой конкретной точке она (t о) будет определяться также целым рядом факторов, среди которых основными являются:

А: высота над уровнем моря;

Б: подстилающая поверхность;

В: удаленность от побережий океанов и морей.

А – Поскольку нагревание воздуха происходит от земной поверхности, то чем меньше абсолютные высоты местности, тем выше температура воздуха (на одной широте). В условиях ненасыщенного водяными парами воздуха наблюдается закономерность: при подъеме на каждые 100 метров высоты температура (t о) уменьшается на 0,6 о С.

Б – Качественные характеристики поверхности.

Б 1 – разные по цвету и структуре поверхности по разному поглощают и отражают солнечные лучи. Максимальная отражательная способность характерна для снега и льда, минимальная для темно окрашенных почв и горных пород.

Освещение Земли солнечными лучами в дни солнцестояний и равноденствий.

Б 2 – разные поверхности имеют разную теплоемкость и теплоотдачу. Так водная масса Мирового океана, занимающего 2/3 поверхности Земли, из-за высокой теплоемкости очень медленно нагревается и очень медленно охлаждается. Суша быстро нагревается и быстро охлаждается т.е., чтобы нагреть до одинаковой t о 1 м 2 суши и 1 м 2 водной поверхности, надо затратить разное количество энергии.

В – от побережий в глубь материков количество водного пара в воздухе уменьшается. Чем более прозрачна атмосфера, тем меньше рассеивается в ней солнечных лучей, и все солнечные лучи достигают поверхности Земли. При наличии большого количества водяного пара в воздухе, капельки воды отражают, рассеивают, поглощают солнечные лучи и далеко не все они достигаются поверхности планеты, нагревание ее при этом уменьшается.

Самые высокие температуры воздуха зафиксированы в районах тропических пустынь. В центральных районах Сахары почти 4 месяца t о воздуха в тени составляет более 40 о С. В то же время на экваторе, где угол падения солнечных лучей самый большой, температура не бывает выше +26 о С.

С другой стороны, Земля как нагретое тело излучает энергию в космос в основном в длинноволновом инфракрасном спектре. Если земная поверхность укутана «одеялом» облаков, то не все инфракрасные лучи уходят с планеты, так как облака их задерживают, отражая обратно к земной поверхности.

При ясном небе, когда водяных паров в атмосфере мало, инфракрасные лучи, испускаемые планетой свободно уходят в космос, при этом происходит выхолаживание земной поверхности, которая остывает и тем самым снижается температура воздуха.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: