Влияние различных факторов на пластичность и сопротивление деформированию. Влияние обработки давлением на структуру и свойства металла

На рис. 2.9 представлены графики влияния холодной деформации на пластичность S, предел прочности а в и твердость НВ низкоуглеродистой стали. Из графиков видно, что уже при деформации, равной 20 %, наблюдается снижение пластичности металла в 3 раза, увеличение твердости и прочности примерно в 1,3 … 1,4 раза. Следовательно, в холодном состоянии из этой стали нельзя получить поковки сложной формы, так как металл при деформировании будет разрушаться вследствие низкой пластичности.

Для увеличения ковкости обрабатываемые металлы нагревают. С повышением температуры увеличивается пластичность и снижается сопротивление металлов деформированию. В качестве примера рассмотрим влияние температуры на пластичность 5 и предел прочности а в стали с содержанием углерода 0,42 % (рис. 2.10). При повышении температуры деформирования с 0 до 300 °С сопротивление деформированию несколько увеличивается, а затем падает с 760 до 10 МН/м 2 при 1200 °С, т. е. уменьшается почти в 76 раз. Пластичность же этой стали, наоборот, при повышении температуры от 0 до 300 °С сначала уменьшается, затем до температуры 800 °С резко увеличивается, после этого незначительно падает, а при дальнейшем увеличении температуры снова. увеличивается. Явление снижения пластичности при 300 °С называется синеломкостью, а при 800 °С - красноломкостью. Синеломкость объясняют выпадением по плоскостям скольжения мельчайших частиц карбидов, которые увеличивают сопротивление деформированию и уменьшают пластичность. Красноломкость появляется вследствие образования в металле многофазной системы, обладающей пониженной пластичностью. Это состояние характерно для неполной горячей обработки давлением. При температурах синеломкости и красноломкости деформировать сталь особенно нежелательно, так как при ковке возможно образование трещин в заготовке и, как следствие, брак продукции.

Различные металлы и сплавы обрабатывают давлением во вполне определенном температурном интервале АТ = Т ъ ~ Т л, где Т в и Т н - соответственно верхний и нижний температурные пределы обработки металла давлением.

Деформирование металла при температуре ниже Т н вследствие снижения пластичности может привести к его разрушению. Нагрев металла выше температуры Т в ведет к дефектам структуры металла, снижению его механических свойств и пластичности. Температурные интервалы обработки давлением для разных металлов различны, однако общим для них является то, что наибольшую пластичность металлы имеют при температурах, превышающих температуры рекристаллизации.

Влияние степени и скорости деформации. Степень и скорость деформации оказывают сложное влияние на пластичность и сопротивление металла деформированию. Причем это влияние зависит как от их значений, так и от того, в каком состоянии деформируют металл - горячем или холодном.

Степень и скорость деформации одновременно оказывают на металл и упрочняющее, и разупрочняющее действия. Так, с увеличением степени деформации, с одной стороны, увеличивается наклеп металла, а следовательно, повышается и его сопротивление деформированию. Но, с другой стороны, увеличение степени деформации, интенсифицируя процесс рекристаллизации, ведет к разупрочнению металла и снижению его сопротивления деформированию. Что касается скорости деформации, то с ее увеличением уменьшается время протекания процесса рекристаллизации и, следовательно, увеличивается упрочнение. Однако с повышением скорости деформации увеличивается количество выделяющейся в металле в момент деформирования теплоты, которая не успевает рассеяться в окружающую среду и вызывает дополнительный разогрев металла. Увеличение же температуры сопровождается снижением сопротивления металла деформированию.

В большинстве случаев ручной ковки металл деформируют в нагретом состоянии и увеличение степени и скорости деформации ведет к уменьшению пластичности и увеличению сопротивления деформированию.

Влияние схемы напряженного состояния. Схема напряженного состояния оказывает существенное влияние на пластичность, сопротивление деформированию и полное усилие обработки давлением.

Чем выще в деформируемом металле растягивающие напряжения, тем больше снижается его пластичность и тем вероятнее появление в нем трещин. Поэтому следует стремиться обрабатывать металл таким образом, чтобы в нем возникали сжимающие напряжения и отсутствовали растягивающие.

Так, металл имеет наименьшую пластичность в условиях деформирования по схеме линейного растяжения (см. рис. 2.6,/ и 2.7, а) и наибольшую - по схеме всестороннего неравномерного сжатия (см. рис. 2.6, iii и 2.11, а). Экспериментально установлено, что сплавы, непластичные в условиях одноосного растяжения, хорошо деформируются в условиях всестороннего неравномерного сжатия. Чугун, например, при растяжении или открытой осадке (см. рис. 2.5) практически не деформируется, тогда как его можно подвергнуть значительным деформациям путем выдавливания с усилием Р и противодавлением Р п р по схеме, приведенной на рис.2.11 ,а.

Знание схем напряженного состояния имеет большое практическое значение. При ковке высоколегированных сталей на плоских бойках (см. рис. 2.5) на бочкообразной поверхности заготовки могут появляться трещины. Объясняется это тем, что в этой зоне напряженное состояние металла характеризуется наличием растягивающих напряжений о 3 . Если же эту заготовку осаживать в оправке (рис. 2.11, б) или ковать в вырезных бойках (рис. 2.11, в), то схема напряженного состояния металла будет соответствовать схеме всестороннего сжатия и, таким образом, можно избежать образования трещин.

В современном кузнечно-штамповочном производстве заготовки деталей из некоторых жаропрочных сплавов получают только выдавливанием, так как при других способах (осадка, гибка, открытая штамповка) наблюдается разрушение сплава.


1. Химический состав
Наибольшей пластичностью обладают чистые металлы, наименьшей - химические соединения (больше сопротивление движению дислокаций).
Легирующие добавки Cr, Ni, W, Co, Mo - увеличивают пластичность; С, Si - снижают пластичность.
2. Микро-, макроструктура
С уменьшением величины зерна пластичность увеличивается (сверхпластичность). Разнородность зерен снижает пластичность.
3. Фазовый состав
Наибольшей пластичностью обладает металл однородного строения. Разные фазы, имеющие некогерентные решетки, затрудняют движение дислокаций и понижают пластичность.
Кроме того, они деформируются по-разному, что способствует образованию трещин.


Снижение пластичности при температуре выше 800°C связано с образованием второй фазы - остаточного феррита. Повышение пластичности при температурах выше 1000°С свидетельствует о резком снижении сопротивления металла деформации.
4. Скорость деформации
Следует различать скорость перемещения инструмента или скорость деформирования (V, м/с) и скорость деформации - изменение степени деформации в единицу зремени (u или ε, с-1),

где L - базовая длина образца, подвергнутого растяжению; Δl - абсолютное удлинение образца Δl=l-L; t - время; V - скорость перемещения инструмента; Н, h - высота тела соответственно до и после деформации; Ah - абсолютное обжатие Δh = H-h; R - радиус рабочих прокатных валков.
С увеличением скорости деформации пластичность снижается , так как не успевает переместиться нужное число дислокаций.
Увеличение пластичности при высоких скоростях деформации объясняется повышением температуры металла.
5. Окружающая среда. Некоторые поверхностно активные вещества повышают пластичность металла (олеиновая кислота) - облегчают пластический сдвиг, другие - способствуют хрупкому разрушению (керосин).
Таким образом, необходимо уделять должное внимание смазкам.


Прокатка в вакууме или в среде инертных газов редкоземельных элементов (Nb, Mo, Te) не позволяет образовываться окисной пленке, которая является очень хрупкой. При прокатке в вакууме газ диффундирует наружу и металл становится пластичным. В США построены цеха с защитной атмосферой. В г. Чирчик (Таджикистан) на металлургическом заводе работает прокатный стан с герметизированными валковыми узлами, в которых создан вакуум.
6. Дробность деформации
Увеличение дробности деформации приводит к повышению пластичности легированных марок стали.


Прокатка на планетарном стане, благодаря высокой дробности деформации, позволяет получить 98% степени деформации. Дробная деформация способствует уменьшению неравномерности структуры металла, облегчает поворот зерен. При повторном нагружении происходит снижение остаточных напряжений между зерном и пограничными зонами,
7. Механическая схема деформации
Наиболее благоприятной схемой пластической деформации является схема трехстороннего неравномерного сжатия. При прочих равных условиях уменьшение растягивающего напряжения благотворно влияет на пластические свойства металла.
При переходе от деформации по схеме одноосного растяжения к деформации по схеме трехстороннего сжатия теоретически возможно увеличение пластичности металла в 2,5 раза.
В классических опытах Кармана по прессованию мрамора и песчаника была получена величина степени деформации мрамора 68% без разрушения при обработке высоким гидростатическим давлением.
Гидростатическое давление


где σ1, σ2, σ3 - главные напряжения сжатия.
Пластическая деформация возникает за счет разности главных напряжений σ1 ~ σ3 = σт.
При прокатке хрупких литых сплавов для снижения растягивающих напряжений на кромках применяют так называемую «рубашку» (перед прокаткой заготовку заворачивают в оболочку из высоко пластичного металла). При этом растягивающие напряжения возникают в оболочке, а деформируемый металл испытывает сжимающие напряжения, предотвращающие трещинообразование.


Перспективным направлением является применение гидроэкструзии - создания всестороннего неравномерного сжимающего давления в деформируемом металле за счет жидкости (будет рассмотрено позже).
В реальных процессах всегда имеется неравномерность деформации (между зернами, между отдельными локальными участками), которая вызывает неравномерность деформации.
8. Масштабный фактор
Чем больше объем тела, тем ниже его пластические свойства при прочих равных условиях - следует учитывать при разработке процессов ОМД и при проектировании оборудования.

Имя:*
E-Mail:
Комментарий:

Добавить

05.04.2019

Виноград относится к ягодам с коротким сроком хранения. Даже в холодильнике он очень быстро становится вялым, теряет нормальный вид. Можно, конечно, заморозить его в...

05.04.2019

Правильно подобрать и установить подходящий кондиционер или сплит-систему поможет опытный специалист компании, которая предоставляет услуги по монтажу, ремонту и...

05.04.2019

Газовый котёл является оборудование, с его помощью происходит получение тепловой энергии, которая требуется для нормального отопления комнаты. Подобные агрегаты нередко...

05.04.2019

На территории Ташкентского металлургического предприятия начали привозить главное технологичное оснащение. В качестве поставщика выступила Группа предприятий «МетПром» в...

05.04.2019

С первого дня возникновения залоговых кредитов у заёмщиков появилась возможность брать значительные денежные суммы на лучших условиях, нежели в случае оформления...

05.04.2019

На сегодняшний день любая компания, работающая в химической отрасли, задействует в оде осуществления разнообразных процедур особое оснащение, где реализуются различные...

05.04.2019

Известная корпорация из Канады First Quantum Minerals, которая зимой текущего года передала в использование рудник по добыче медного сырья Cobre Panama на территории...

05.04.2019

ВВГнг-LS является силовым кабелем, обеспечивающим электрическое питание стационарных (в составе различных строений), а также мобильных (в условиях строительных площадок)...

Пластичность – способность металла воспринимать остаточную деформацию без разрушения.

Иногда ошибочно отождествляют высокую пластичность и низкое сопротивление деформации. Пластичность и сопротивление деформации – это разные, не зависящие одна от другой характеристики твердых тел.

Способность пластически изменять форму присуща всем твердым телам, но у некоторых из них она ничтожна мала и проявляется только при деформации в особых условиях.

Факторы, влияющие на пластичность:

1. Природа вещества: чистые металлы обладают хорошей пластичностью, причем примеси, образующие с металлом твердые растворы снижают пластичность меньше, чем не растворяющиеся в нем. Особенно заметно снижают пластичность примеси, выпадающие при кристаллизации по границам зерен;

2. Наклеп: благодаря явлению самоупрочнения, сопровождающее наклеп, понижается пластичность металла;

3. Температура: повышение температуры металла приводит к увеличению пластичности. При очень низких температурах металл становится хрупким. Существуют температурные интервалы, различные для разных металлов. В углеродистой стали обнаруживается заметное снижение пластичности при температурах в , называемое синеломкостью. Это явление объясняется выделением мельчайших частиц карбидов по плоскостям скольжения.

При недостаточном содержании марганца в малоуглеродистой стали резкое падение пластичности при температуре в называют красноломкостью. Это явление возникает благодаря расплавлению эвтектики FeS, располагающейся по границам зерен.

К резкому падению пластических свойств приводит пережог – дефект, образующийся в результате длительной выдержки металла в зоне высоких температур, близких к температуре плавления, сопровождающийся окислением поверхности зерен, ослабляющее межзеренные связи. Пережог является неисправимым дефектом.

Понижение пластичности наблюдается также при перегреве – дефекте, образующимся в результате выдержки металла в зоне высоких температур, сопровождающимся чрезмерным укрупнением зерен в области фазовых превращений. Перегрев является устранимым дефектом и решается последующей термообработкой;

4. Скорость деформации: при горячей обработке металлов в связи с отставанием процесса рекристаллизации от наклепа повышение скорости понижает пластичность. При холодной обработке повышение скорости деформации может увеличивать пластичность за счет разогрева металла выделяющимся теплом;

5. Характер напряженного состояния: по существующим в теории обработки металлов давлением взглядам пластическая деформация происходит под воздействием сдвигающих напряжений, а хрупкое разрушение вызывается нормальными напряжениями растяжения. Влияние напряженного состояния на пластичность можно оценивать по величине гидростатического давления:

Если гидростатическое давление возрастает, то пластичность увеличивается, если же оно уменьшается, то пластичность уменьшается. Опыт показывает, что, изменяя напряженное состояние, можно все твердые тела считать пластичными или хрупкими, поэтому пластичность считают на свойством, а состоянием вещества;

^

Факторы, влияющие на пластичность металла


Пластичность зависит от природы вещества (его химического состава и структурного строения), температуры, скорости деформации, степени наклепа и от условий напряженного состояния в момент деформации.

^ Влияние природных свойств металла. Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности. Примеси замещения меньше снижают пластичность, чем примеси внедрения.

Пластичность зависит от структурного состояния металла, особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

^ Влияние температуры . При очень низких температурах, близких к абсолютному нулю, все металлы хрупкие. Низкую пластичность необходимо учитывать при изготовлении конструкций, работающих при низких температурах.

С повышением температуры пластичность малоуглеродистых и среднеуглеродистых сталей повышается. Это объясняется тем, что происходит исправление нарушений границ зерен. Но повышение пластичности происходит не монотонно. В интервалах некоторых температур наблюдается «провал» пластичности. Так для чистого железа обнаруживается хрупкость при температуре 900-1000 о С. Это объясняется фазовыми превращениями в металле. Снижение пластичности при температуре 300-400 о С называется синеломкостью , при температуре 850-1000 о С – красноломкостью .

Высоколегированные стали имеют большую пластичность в холодном состоянии. Для шарикоподшипниковых сталей пластичность практически не зависит от температуры. Отдельные сплавы могут иметь интервал повышенной пластичности.

Когда температура приближается к температуре плавления, пластичность резко снижается из-за перегрева и пережога. Перегрев выражается в чрезмерном росте зерен предварительно деформированного металла. Перегрев исправляется нагревом до определенной температуры и последующим быстрым охлаждением. Пережог - неисправимый брак. Он заключается в окислении границ крупных зерен. При этом металл хрупко разрушается.

^ Влияние наклепа и скорости деформации . Наклеп понижает пластичность металлов.

Влияние скорости деформации на пластичность двояко. При горячей обработке давлением повышение скорости ведет к снижении пластичности, т.к. наклеп опережает рекристаллизацию. При холодной обработке повышение скорости деформации чаще всего повышает пластичность из-за разогрева металла.

^ Влияние характера напряженного состояния. Характер напряженного состояния оказывает большое влияние на пластичность. Возрастание роли напряжений сжатия в общей схеме напряженного состояния увеличивает пластичность. В условиях резко выраженного всестороннего сжатия возможно деформировать даже очень хрупкие материалы. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Возрастание роли напряжений растяжения приводит к снижению пластичности. В условиях всестороннего растяжения с малой разностью главных напряжений, когда касательные напряжения малы для начала пластической деформации, даже самые пластичные материалы хрупко разрушаются.

Оценить пластичность можно через . Если увеличивается, то и пластичность увеличивается, и наоборот. Опыт показывает, что изменяя напряженное состояние, можно все твердые тела сделать пластичными или хрупкими. Поэтому пластичность считают не свойством, а особым состоянием вещества .
^

Условие пластичности

Условие пластичности для линейного напряженного состояния


Условием пластичности называется условие перехода упругой деформации в пластическую , т.е. оно определяет точку перегиба на диаграмме растяжение-сжатие.

В линейном напряженном состоянии, например при растяжении образца, пластическая деформация начинается тогда, когда нормальное напряжение достигает предела текучести. То есть для линейного напряженного состояния условие пластичности имеет вид:
.

Примечание: в процессе деформации изменяется. Поэтому в теории пластичности вместо понятия «предел текучести» пользуются понятием «сопротивление деформации», т.е. удельное усилие, приводящее образец в пластическое состояние в процессе однородного линейного растяжения при данной температуре, данной скорости и степени деформации.

При объемном напряженном состоянии тоже должно быть определенное соотношение между сопротивлением деформации и главными нормальными напряжениями для начала пластической деформации.
^

Условие постоянства максимального касательного напряжения (условие пластичности Сен-Венана)


На основании опытных данных Треска установил, что для начала пластической деформации максимальное касательное напряжение должно достигнуть определенной, постоянной для данного металла величины. Сен-Венан на основании этих опытов вывел условие пластичности. Он установил, что пластическая деформация наступает тогда, когда максимальное касательное напряжение достигает величины, равной половине предела текучести, т.е.
. Но
. Отсюда получаем
.

Таким образом, условие пластичности Сен-Венана имеет вид:

Пластическая деформация наступает тогда, когда максимальная разность главных нормальных напряжений достигает величины сопротивления деформации, т.е.

В произвольных осях уравнение пластичности имеет вид:

Опытная проверка этого закона показала расхождение теории с практикой 0-16%. Это объясняется тем, что уравнение не учитывает влияние среднего главного напряжения .

^

Энергетическое условие пластичности (условие пластичности Губера – Мизеса - Генки)


Согласно условию пластичности Сен-Венана переход тела из упругого состояния в пластическое не зависит от среднего напряжения . М. Губер, З. Мизес и Г. Генки предложили новое условие пластичности:

Пластическая деформация наступает тогда, когда интенсивность напряжений достигает величины, равной пределу текучести при линейном напряженном состоянии, т.е.

После подстановки формулы для интенсивности напряжений получим

Или в главных напряжениях

Учитывая, что при линейном напряженном состоянии
, получаем
.

Это условие пластичности называется еще условием постоянства интенсивности напряжений или условием постоянства интенсивности касательных напряжений или условием постоянства октаэдрических напряжений.

Условие пластичности Губера-Мизеса-Генки называется энергетическим условием пластичности, т.к. оно было выведено из энергетического условия: пластическая деформация наступает тогда, когда потенциальная энергия упругой деформации, направленная на изменение формы тела, достигнет определенного значения независимо от схемы напряженного состояния.

Из условия пластичности следует, что условие перехода упругой деформации в пластическую не зависит от абсолютной величины главных напряжений, а зависит только от их разности. Увеличение или уменьшение главных напряжений на одну и ту же величину не изменяет условия наступления пластической деформации, т.е. переход из упругого состояния в пластическое не зависит от шарового тензора, а зависит только от девиатора напряжений.

Для дальнейших преобразований введем безразмерную величину – направляющий тензор напряжения:
, выразим через :
и подставим в уравнение пластичности:

После преобразований получим:

О
бозначим
, тогда уравнение пластичности примет вид:

Коэффициент называется коэффициентом Лоде по имени ученого,

Экспериментально проверившего уравнение пластичности.

Поскольку
, возможны следующие крайние случаи:

, тогда
и
;

, тогда
и ;

, тогда
и
;

т.е. коэффициент Лоде принимает значения от 1 до 1,15. В том случае, когда , уравнение пластичности принимает вид
, т.е. совпадает с условием пластичности Сен-Венана. В случае, когда
, расхождение условий пластичности составляет максимальное значение (около 16%).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: