Солнечная башня пожинает лучи с зеркальных полей. Солнечные башни испании

14 января 2018 | 13:44

djuga: это еще без учета стоимости земли. Солнечные электростанци занимают огромную площадь из-а очень низкой плотности энергии солнца. На один квадратный метр приходит 1400Вт энергии. С учетом ноч и дня это количество уполовинивается, за счет поворота зеркал и неоптимального положения солнца вечером и утром, атмосферных потерь - еще падает минимум в 2 раза, но и кпд максимум 30%. Итого - с метира можно снять около 120 Вт электроэнергии. Для 120МВт нужно было бы 120 миллионов квадратных метров или 120 квадратных КИЛОМЕТРОВ. Как-то сомнительно, что Израиль согласился занять такую площадь зеркалами.

djuga 14 января 2018 | 15:56

geokrilov: Как-то сомнительно, что Израиль согласился занять такую площадь зеркалами.
=========================================================================================

А в чем сомнения когда башня уже стоит? Полагаю, что они учли все свои возможности, взвесили всяческие за и против.

djuga 14 января 2018 | 22:48

geokrilov: реальная средняя мощность будет не 120 мегаватт, раза в 3 поменьше.
============================================================================

Вы полагаете, что этим заниматься не стоило?
Простите, но я не знаю как можно сделать подобные расчеты на коленке, не имея всех данных. Но даже если вы и правы, то первые мобильники весили килограммы, а 100 лет назад КПД у паровоза было около 7% если мне память не изменяет.

geokrilov 15 января 2018 | 04:23

djuga: я инженер на пенсии (механик по космическим летельным аппаратам _МВТУ), тогда еще не было калькуляторов и расчеты делались на линейке. Я мог бы объяснить про солнечные батареи. Мобильнки - это про связь и информацию. С тех пор как я считал что-то на БЭСМ6 студентом мобильники имеют на борту больше вычистительной мощности чем тогдашний мейнфрейм. А кпд солнечной бататареи тогда был 12%, а сейчас не превышает 20. Серийныйе - процентов 15.
И да, не стОит надеяться на альтернативные источники. Тем более, что в Израиле, вроде, нашли газовые поля и месторождения нефти в Средиземном море. На худой конец, можно построить атомную электростанцию.
КПД паровоза можно поднять машиной двойного расширения и теплообменником на выходе, но его теоретический КПД не выше того, что получится из цикла карно, также и КПД солнечной гелиостанции или солнечной батареи нельзя сделать выше определенной величины.
Альтернативные источники оправданы там, куда не дотащить линию электропередач. Например, для питания метеостанции на Колыме или сотовых станций где-нибудь в Красноярском Крае.

djuga 15 января 2018 | 07:49

geokrilov: Мобильнки - это про связь и информацию.
===============================================================

Да-да, а паровозы - это про транспорт.
Я ничуть не сомневаюсь в вашей квалификации и опыте. Но речь не идет о полном переходе на альтернативную энергетику, а лишь о снижении доли, работающей на не возобновляемых ресурсах.И с этой точки зрения реализуемый проект вполне себе рационален даже при КПД в 20%. К тому же он экологически чист и безопасен, не требует громадной инфраструктуры в отличие от любой ТЭС.

Создано 28.07.2011 12:13 Пустыня и солнце – понятия неразделимые. Потому неудивительно, что пустыни по всему миру магнитом притягивают любые мало-мальски серьезные компании, специализирующиеся на солнечной энергетике – где еще небесное светило будет столь неизменно ответственно выполнять людские прихоти? Пустыня в штате Аризона (США) тоже не избежала пристального внимания «солнечных» специалистов. Именно здесь австралийская компания EnviroMission готовится воплотить свой первый, крайне амбициозный проект создания полномасштабной солнечной электростанции (так называемой «солнечной башни»).

«Полномасштабной» – это еще мягко сказано. По задумке разработчиков, электростанция будет просто-таки огромной! По завершению работ 800-метровая «солнечная башня» станет одним из самых высоких строений во всем мире. Общая производительность, оцененная в 200 мегаватт, позволит ей снабжать возобновляемой энергией 150 тысяч окрестных городов на протяжении как минимум 80 лет.

Генеральный директор EnviroMission Роджер Дэви (Roger Davey) объяснил журналистам принцип работы «солнечной башни», поделился подробностями относительно подготовки к «Аризонскому проекту» и рассказал о причинах, по которым проект не мог быть реализован в родной для компании-разработчика Австралии.

Как это работает

Идея, лежащая в основе «солнечной башни» от EnviroMission, предельно проста. Солнце освещает и нагревает участок земли у подножия башни, покрытый теплоизолирующим материалом и представляющий собой что-то вроде очень большой теплицы. Нагретый воздух стремится вверх, стекаясь к единственному (центральному) отверстию в покрытии. Именно здесь, в основании башни, находятся турбины, которые и производят электричество за счет естественного восходящего потока воздуха.

Такую систему сложно воспринимать всерьез до тех пор, пока не рассчитаешь необходимую разницу температур и не увеличишь многократно масштаб всего сооружения – что и проделали разработчики. Если поместить башню в жаркую пустынную местность, где температура поверхности днем достигает 40 градусов Цельсия, и прибавить влияние искусственно созданного «парникового эффекта», то температура в воздушном резервуаре составит уже 80-90 градусов Цельсия. Остается увеличить теплицу-резервуар вокруг башни так, чтобы радиус ее достигал нескольких сотен метров, – и получишь солидный объем горячего воздуха.

Нелишним будет также увеличить высоту башни до нескольких сотен метров (каждые сто метров отдаления от поверхности земли означают понижение температуры воздуха на один градус). Чем больше разность температур, тем сильнее башня «втягивает» горячий воздух со дна, и тем больше энергии производят турбины.

Преимущества такого источника энергии очевидны:

  • Поскольку электростанция функционирует за счет перепада температур, а не абсолютной температуры, то она будет продолжать работать в любую погоду;
  • Поскольку за день почва успевает сильно нагреться, остаточного тепла хватит для продолжения работы ночью;
  • Поскольку для означенной цели лучше всего подходит участок сухой раскаленной почвы, то и возводить «солнечную башню» можно на более-менее бесполезном пространстве посреди пустыни;
  • Электростанция практически не требует техобслуживания – за исключением редкого осмотра и/или ремонта турбин башня «просто работает» – с начала постройки и до тех пор, пока существуют входящие в ее состав конструкции;
  • «Солнечной башне» не требуется сырье – ни уголь, ни уран, ничего, кроме воздуха и солнечного света;
  • Она абсолютно безотходна и не выбрасывает никаких загрязняющих веществ, кроме теплого воздуха; определенные участки теплицы даже могут использоваться по прямому назначению для выращивания растений.

Проект Аризона в цифрах

То, что планируют разработчики из EnviroMission – отнюдь не первая попытка создания «солнечной башни». Опытная модель, построенная в Испании, функционировала на протяжении семи лет (с 1982 по 1989 год) и доказала работоспособность технологии.

Однако на этот раз все будет намного масштабнее. Как уже говорилось, проектная высота башни составляет 800 метров (всего на 30 метров ниже дубайского Бурж Халифа, самого высокого здания в мире на 2010 год), диаметр в верхней части – 130 метров.

На данный момент разработчики из EnviroMission заняты покупкой земельного участка и составлением проектной документации. Стоимость постройки, по их оценке, составит 750 миллионов долларов США. Энергоэффективность электростанции ожидается на уровне 60%, что делает ее намного эффективнее и надежнее других возобновляемых источников энергии.

Куда направится произведенная «солнечной башней» энергия, известно заранее - недавно Государственное энергетическое управление Южной Калифорнии подписало с EnviroMission соглашение о сотрудничестве (предварительной покупке электроэнергии) сроком на 30 лет. Исходя из результатов финансового моделирования, постройка башни окупится всего за 11 лет, притом, что ее конструкция рассчитана на более 80 лет службы.

По условиям договора, электроэнергию в американские дома аризонская «солнечная башня» станет поставлять уже в начале 2015 года.

Фантастическая картина, неправда ли? Перед Вами - солнечная электростанция так называемого башенного типа с центральным приемником. В этих электростанциях для преобразования в электроэнергию солнечного света используется вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор. Каждое зеркало управляется центральным компьютером, который ориентирует его поворот и наклон таким образом, чтобы отраженные солнечные лучи были всегда были направлены на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину генератора, вырабатывающего электроэнергию, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 C.


Первая башенная электростанция под названием “Solar One” близ Барстоу (Южная Калифорния) была построена еще в 1980 году и с успехом продемонстрировала применение этой технологии для производства электроэнергии. На этой станции используется водно-паровая система мощностью 10 МВт.

Самую большую солнечную электростанцию в виде башни запустила компания Abengoa Solar. Ее мощность составляет 20 МВт. Солнечная башня PS20 расположена недалеко от Севильи, в Испании, и построена она рядом с ранее действовавшей башней PS10 меньшей мощности.


Солнечная электростанция PS20 концентрирует на башне высотой 161 метр лучи, отраженные от 1255 гелиостатов. Каждое зеркало гелиостата площадью 120 м 2 направляет солнечные лучи на солнечный коллектор, расположенный наверху 165-метровой башни. Коллектор превращает воду в пар, который приводит в движение турбину. Построена станция в 2007г. К 2013 году Испания планирует получать от солнечных установок разнообразной конструкции, включая башни, около 300 МВт электроэнергии.

Недостатком любой солнечной станции является падение ее выдаваемой мощности в случае появления облаков на небе, и полное прекращение работы в ночное время. Для решения этой проблемы предложено использования в качестве теплоносителя не воды, а солей с большей теплоемкостью. Расплавленная солнцем соль концентрируется в хранилище, построенного в виде большого термоса, и может использоваться для превращения воды в пар еще продолжительное время после того, как солнце скроется за горизонтом.

В 1990-х годах “Solar One” была модернезирована для работы на расплавленных солях и теплоаккумулирующей системы. Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей диспетчеризацию электроэнергии при коэффициенте нагрузки до 65%. При такой конструкции расплавленная соль закачивается из “холодного” бака при температуре 288 C и проходит через приемник, где нагревается до 565 C, а затем возвращается в “горячий” бак. Теперь горячую соль по мере надобности можно использовать для выработки электричества. В современных моделях таких установок тепло хранится на протяжении 3 - 13 часов.


Розовым цветом показано хранилище горячей соли, синим - холодной. Красным - отмечен парогенератор, соединённый с турбиной и конденсатором пара (иллюстрация взята с сайта solarpaces.org).

Строительство такой станции обходится в сумму порядка 5 миллионов евро.

Любопытно, что солнечная башня может использоваться не только для непосредственного преобразования тепла в электроэнергию с помощью турбин. Израильский Weizmann Institute of Science в 2005 году отработал технологический процесс получения цинка из оксида цинка в солнечной башне. (Оксид цинка образуется при отработке срока эксплуатации большинства батарей - см. статью ). Оксид цинка в присутствии древесного угля нагревается в башне солнечными лучами до температуры 1200 °С. В результате процесса получается чистый цинк. Далее цинк можно использовать для изготовления батарей. Другой вариант его использования - поместить цинк в воду и в результате химической реакции получить водород и оксид цинка. Оксид цинка снова отправляется в солнечную башню, а водород может использоваться для работы водородных двигателей в качестве экологически чистого топлива. Эта технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.

Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию непосредственного производства водорода из воды при помощи параболических солнечных концентраторов. Оказывается, вода начинает разделяться на водород и кислород при температуре более 1700 °С, что без проблем достигается в гелиоустановках.

Таким образом, человечество постепенно осваивает самый большой источник энергии, находящийся под боком - Солнце.

Завораживающее и загадочное сооружение возвышается с недавних пор над полями в районе Санлукар-ла-Майор (Sanlucar la Mayor), недалеко от центра Севильи. Современная водонапорная башня, научная установка, зернохранилище? Но откуда здесь многочисленные яркие световые стрелы, словно прорезающие воздух? Они видны за многие километры.

PS10 — первая в Европе коммерческая термальная солнечная электростанция довольно редкого типа — «солнечная башня» (solar power tower) официально вступила в строй 30 марта нынешнего года. Мощность станции, возведённой в Андалусии, составляет 11 мегаватт.

Принцип её работы прост: поле из множества гелиостатов — зеркал, отслеживающих движение Солнца, собирает свет и направляет его на вершину высокой башни, где яркий солнечный зайчик превращает воду в пар. Пар бежит по трубам и, в конечном счёте, крутит турбины, соединённые с электрическими генераторами.

PS10. Свет от сотен больших зеркал столь ярок, что заставляет светиться пыль и влагу в воздухе, благодаря чему и видны лучи, атакующие красивую белую башню. Кстати, те зеркала, что видны на переднем плане - не работают на башню. Это просто стоящие рядом фотоэлектрические панели с концентраторами. Зеркала же, направленные на солнечную башню, с этого ракурса не видны (фото Solúcar).

По такой схеме не раз создавались установки во многих странах, но электростанция, управляемая компанией Solúcar Energía , филиалом промышленного гиганта Abengoa , пожалуй, самая внушительная из всех.

Её 624 зеркала, площадью по 120 квадратных метров каждое, направляют свет на красивую бетонную башню, высотой 115 метров. Башню эту можно назвать произведением искусства – огромный фигурный вырез в ней придаёт сооружению визуальную лёгкость.


Солнечная башня во время строительства. Возвышающееся над сельской местностью сооружение издалека выглядит внушительно. Вблизи тоже (фотографии Solúcar).

Не меньшее впечатление производит и свет вокруг.

«Когда я вышел из автомобиля, я едва мог открыть глаза — сцена была слишком ярка. Постепенно, вооружившись тёмными очками, я разглядел ряды зеркал и центр, в который сходились их лучи – набор труб наверху башни» – так передаёт свои впечатления от встречи с PS10 Дэвид Шукман (David Shukman), корреспондент BBC, побывавший недавно на этой станции и даже отважившийся забраться наверх башни во время её работы.

Сначала он ехал на лифте. Но последние четыре этажа пришлось идти пешком. Ступеньки, ведущие на крышу, Дэвиду показались обжигающими. Вообще он сравнил верхние этажи башни с сауной, несмотря на наличие мощной теплоизоляции парогенератора.

И такой нагрев верхушки башни даром не пропадает. Новая испанская электростанция может генерировать до 24,3 гигаватт-часов в год.


Дэвид Шукман на крыше, возможно, самой высокой «сауны» в мире (фотографии BBC).

С новой станцией Испания вырвалась вперёд в данной технологии утилизации солнечного света, но сама идея таких башен далеко не нова.

Из крупных сооружений такого типа можно вспомнить проект Solar One — Solar Two . Эта демонстрационная солнечная электростанция работала и развивалась с 1981 по 1999 годы в пустыне Мохаве (Калифорния). В последней версии (Solar Two) солнечную башню этой станции окружали 1926 гелиостатов, общей площадью почти 83 тысячи квадратных метров. Её мощность превышала 10 мегаватт.

Интересно, что солнечный свет грел не воду, а промежуточный теплоноситель — расплавленную соль. Это была смесь нитрата натрия и нитрата калия. От неё уже закипала вода, дающая пар для турбин (в первом варианте станции — Solar One – теплоносителем являлось масло).

Этот приём позволил Solar Two накапливать тепло про запас. В облачную погоду или вечером турбины работали на энергии, сохранённой в больших цистернах с горячей солью.


Солнечная электростанция Solar Two (фотографии с сайтов en.wikipedia.org и parsnip.evansville.edu).

Та башня и поле зеркал никуда не делись и сейчас. Только в 1999 году учёные переделали Solar Two в гигантский детектор черенковского излучения, для изучения воздействия на атмосферу космических лучей.

Опыт американцев, однако, не пропал: при их помощи и по аналогичному проекту в Испании должны возвести станцию Solar Tres на 15 мегаватт.

Проект предусматривает постройку высокой солнечной башни, окружённой 2493 зеркалами по 96 квадратных метров каждое (смотрите также эту страничку проекта). Общая площадь зеркал составит 240 тысяч квадратных метров.

Вместительное хранилище расплавленной соли (нагретой до температуры 565 градусов по Цельсию) сможет обеспечивать работу парогенераторов в течение 16 часов после захода Солнца. Так что летом генераторы станции не будут останавливаться ни днём, ни ночью.


Внешне Solar Tres будет похожа на Solar Two. А пока можно посмотреть только на схему станции. Розовым показано хранилище горячей соли, синим - холодной. Красным - парогенератор, соединённый с турбиной и конденсатором (иллюстрация с сайта solarpaces.org).

Еврокомиссия выделила на это чудо 5 миллионов евро. Создаёт станцию международная организация SolarPACES , участвовавшая и в создании PS10. При этом в проектировании и постройке Solar Tres задействованы компании из Испании, Франции, Чехии и США.

Интересно, что и в PS10 предусмотрено аккумулирование энергии. Только непосредственно в виде горячего водяного пара, сохраняемого в наборе из больших цистерн. Его запаса хватает на один час работы турбин без Солнца, так что ночной перерыв эта система не перекрывает, но всё же даёт станции некоторую гибкость на случай временно набежавших тучек.

Надо заметить, что PS10 – не единственная солнечная электростанция в Испании. Здесь работают ещё несколько крупных солнечных сооружений самых различных типов. Но проект PS10 представляет собой особый интерес: в том же месте инженеры планируют возвести ещё одну установку–близнец под называнием PS20. Только она уже будет генерировать мощность в 20 мегаватт, собирая свет от большего количества зеркал.

Инженеры разработали парник, нагревающий воздух под солнцем. Над парником «нарисована» труба, в которой этот воздух создавал бы тягу. В трубе должны быть поставлены турбины. Всё кажется простым, если не принимать во внимание, что диаметр теплицы должен составить пару километров, а высота трубы - 800 метров.

Австралийская компания EnviroMission, ещё в 2002 году удивившая мир идеей "вавилонской солнечной башни", похоже, наконец-то нашла понимание, пусть не у себя на родине, где начатый было проект так и не состоялся, но хотя бы за океаном.

Электростанцию с банальным названием «солнечная башня» (Solar Tower) австралийцы собрались возвести в Аризоне. Для управления стройкой в июне нынешнего года к проекту была подключена компания-консультант Faithful+Gould. Сейчас EnviroMission занята приобретением земли и планированием первых работ на участке.

В основе Solar Tower лежит огромная круглая теплица. Днём в пустынной местности воздух и в обычных-то условиях прогревается до 40 градусов, а уж под прозрачной плёнкой или стеклом исполинского парника температура может доходить и до 80 °С.

По замыслу австралийцев, нагретый воздух будет стекаться к центру сооружения, где возвышается 800-метровая труба. У её основания будут размещены 32 турбины, вращающие генераторы. Их суммарная пиковая мощность составит 200 мегаватт.

Вырабатываемой при помощи Solar Tower энергии будет достаточно, чтобы питать около 100 тысяч типичных американских домохозяйств или городок с населением в сотню с лишним тысяч человек. При этом по сравнению с обычной тепловой электростанцией равной мощности парник с высочайшей в мире трубой сэкономит выброс порядка 900 тысяч тонн углекислого газа в год.

Преимущества предлагаемой технологии таковы. Тяга в башне зависит не от абсолютного значения температуры в теплице, а от разности температур воздуха в ней и воздуха, окружающего трубу на большой высоте. Потому Solar Tower может работать практически в любую погоду.

Кроме того, такая башня продолжит вырабатывать электрическую энергию и ночью, поскольку за день грунт под теплицей прогреется очень существенно и сможет ещё долго согревать воздух под плёнкой.

Обойдётся эта электростанция примерно в $750 миллионов. Разработчики не уточняют, откуда добыты средства и есть ли уже требуемая сумма. Но хотя строительство колосса ещё не начато, EnviroMission уже заключила с компанией Southern California Public Power Authority договор о покупке энергии, которую будет вырабатывать Solar Tower.

По информации Gizmag, договор этот заключён на 30 лет.

Между тем, как следует из оценок самой EnviroMission, солнечная энергетическая башня окупит своё возведение всего за 11 лет, а простоять этот исполин сможет, по меньшей мере, 80 лет. Это амбициозная цель и непростая задачка для инженеров, проектирующих рекордную трубу.

Смогут ли австралийцы выполнить задуманное? По соглашению с SCPPA, аризонская башня должна начать поставлять электричество в сеть в первой половине 2015 года.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: