Derivative of multipliers. Derivative of the sum and difference of functions. The derivative of the sum is equal to the sum of the derivatives

If we follow the definition, then the derivative of a function at a point is the limit of the increment ratio of the function Δ y to the increment of the argument Δ x:

Everything seems to be clear. But try to calculate by this formula, say, the derivative of the function f(x) = x 2 + (2x+ 3) · e x sin x. If you do everything by definition, then after a couple of pages of calculations you will simply fall asleep. Therefore, there are simpler and more effective ways.

To begin with, we note that the so-called elementary functions can be distinguished from the whole variety of functions. These are relatively simple expressions, the derivatives of which have long been calculated and entered in the table. Such functions are easy enough to remember, along with their derivatives.

Derivatives of elementary functions

Elementary functions are everything listed below. The derivatives of these functions must be known by heart. Moreover, it is not difficult to memorize them - that's why they are elementary.

So, the derivatives of elementary functions:

Name Function Derivative
Constant f(x) = C, CR 0 (yes, yes, zero!)
Degree with rational exponent f(x) = x n n · x n − 1
Sinus f(x) = sin x cos x
Cosine f(x) = cos x − sin x(minus sine)
Tangent f(x) = tg x 1/cos 2 x
Cotangent f(x) = ctg x − 1/sin2 x
natural logarithm f(x) = log x 1/x
Arbitrary logarithm f(x) = log a x 1/(x ln a)
Exponential function f(x) = e x e x(nothing changed)

If an elementary function is multiplied by an arbitrary constant, then the derivative of the new function is also easily calculated:

(C · f)’ = C · f ’.

In general, constants can be taken out of the sign of the derivative. For example:

(2x 3)' = 2 ( x 3)' = 2 3 x 2 = 6x 2 .

Obviously, elementary functions can be added to each other, multiplied, divided, and much more. This is how new functions will appear, no longer very elementary, but also differentiable according to certain rules. These rules are discussed below.

Derivative of sum and difference

Let the functions f(x) and g(x), whose derivatives are known to us. For example, you can take the elementary functions discussed above. Then you can find the derivative of the sum and difference of these functions:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

So, the derivative of the sum (difference) of two functions is equal to the sum (difference) of the derivatives. There may be more terms. For example, ( f + g + h)’ = f ’ + g ’ + h ’.

Strictly speaking, there is no concept of "subtraction" in algebra. There is a concept of "negative element". Therefore, the difference fg can be rewritten as a sum f+ (−1) g, and then only one formula remains - the derivative of the sum.

f(x) = x 2 + sinx; g(x) = x 4 + 2x 2 − 3.

Function f(x) is the sum of two elementary functions, so:

f ’(x) = (x 2+ sin x)’ = (x 2)' + (sin x)’ = 2x+ cosx;

We argue similarly for the function g(x). Only there are already three terms (from the point of view of algebra):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Answer:
f ’(x) = 2x+ cosx;
g ’(x) = 4x · ( x 2 + 1).

Derivative of a product

Mathematics is a logical science, so many people believe that if the derivative of the sum is equal to the sum of the derivatives, then the derivative of the product strike"\u003e equal to the product of derivatives. But figs to you! The derivative of the product is calculated using a completely different formula. Namely:

(f · g) ’ = f ’ · g + f · g

The formula is simple, but often forgotten. And not only schoolchildren, but also students. The result is incorrectly solved problems.

A task. Find derivatives of functions: f(x) = x 3 cosx; g(x) = (x 2 + 7x− 7) · e x .

Function f(x) is a product of two elementary functions, so everything is simple:

f ’(x) = (x 3 cos x)’ = (x 3)' cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (−sin x) = x 2 (3cos xx sin x)

Function g(x) the first multiplier is a little more complicated, but the general scheme does not change from this. Obviously, the first multiplier of the function g(x) is a polynomial, and its derivative is the derivative of the sum. We have:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x(2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Answer:
f ’(x) = x 2 (3cos xx sin x);
g ’(x) = x(x+ 9) · e x .

Note that in the last step, the derivative is factorized. Formally, this is not necessary, but most derivatives are not calculated on their own, but to explore the function. This means that further the derivative will be equated to zero, its signs will be found out, and so on. For such a case, it is better to have an expression decomposed into factors.

If there are two functions f(x) and g(x), and g(x) ≠ 0 on the set of interest to us, we can define a new function h(x) = f(x)/g(x). For such a function, you can also find the derivative:

Not weak, right? Where did the minus come from? Why g 2? But like this! This is one of the most complex formulas - you can’t figure it out without a bottle. Therefore, it is better to study it with specific examples.

A task. Find derivatives of functions:

There are elementary functions in the numerator and denominator of each fraction, so all we need is the formula for the derivative of the quotient:


By tradition, we factor the numerator into factors - this will greatly simplify the answer:

A complex function is not necessarily a formula half a kilometer long. For example, it suffices to take the function f(x) = sin x and replace the variable x, say, on x 2+ln x. It turns out f(x) = sin ( x 2+ln x) is a complex function. She also has a derivative, but it will not work to find it according to the rules discussed above.

How to be? In such cases, the replacement of a variable and the formula for the derivative of a complex function help:

f ’(x) = f ’(t) · t', if x is replaced by t(x).

As a rule, the situation with the understanding of this formula is even more sad than with the derivative of the quotient. Therefore, it is also better to explain it with specific examples, with a detailed description of each step.

A task. Find derivatives of functions: f(x) = e 2x + 3 ; g(x) = sin ( x 2+ln x)

Note that if in the function f(x) instead of expression 2 x+ 3 will be easy x, then we get an elementary function f(x) = e x. Therefore, we make a substitution: let 2 x + 3 = t, f(x) = f(t) = e t. We are looking for the derivative of a complex function by the formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

And now - attention! Performing a reverse substitution: t = 2x+ 3. We get:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Now let's look at the function g(x). Obviously needs to be replaced. x 2+ln x = t. We have:

g ’(x) = g ’(t) · t' = (sin t)’ · t' = cos t · t

Reverse replacement: t = x 2+ln x. Then:

g ’(x) = cos ( x 2+ln x) · ( x 2+ln x)' = cos ( x 2+ln x) · (2 x + 1/x).

That's all! As can be seen from the last expression, the whole problem has been reduced to calculating the derivative of the sum.

Answer:
f ’(x) = 2 e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2+ln x).

Very often in my lessons, instead of the term “derivative”, I use the word “stroke”. For example, the stroke of the sum is equal to the sum of the strokes. Is that clearer? Well, that's good.

Thus, the calculation of the derivative comes down to getting rid of these very strokes according to the rules discussed above. As a final example, let's return to the derivative power with a rational exponent:

(x n)’ = n · x n − 1

Few know that in the role n may well be a fractional number. For example, the root is x 0.5 . But what if there is something tricky under the root? Again, a complex function will turn out - they like to give such constructions in tests and exams.

A task. Find the derivative of a function:

First, let's rewrite the root as a power with a rational exponent:

f(x) = (x 2 + 8x − 7) 0,5 .

Now we make a substitution: let x 2 + 8x − 7 = t. We find the derivative by the formula:

f ’(x) = f ’(t) · t ’ = (t 0.5)' t' = 0.5 t−0.5 t ’.

We make a reverse substitution: t = x 2 + 8x− 7. We have:

f ’(x) = 0.5 ( x 2 + 8x− 7) −0.5 ( x 2 + 8x− 7)' = 0.5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Finally, back to the roots:

The calculator calculates the derivatives of all elementary functions, giving a detailed solution. The differentiation variable is determined automatically.

Function derivative is one of the most important concepts in mathematical analysis. Such problems led to the appearance of the derivative, such as, for example, calculating the instantaneous velocity of a point at a moment of time, if the path is known depending on time, the problem of finding a tangent to a function at a point.

Most often, the derivative of a function is defined as the limit of the ratio of the increment of the function to the increment of the argument, if it exists.

Definition. Let the function be defined in some neighborhood of the point . Then the derivative of the function at the point is called the limit, if it exists

How to calculate the derivative of a function?

In order to learn to differentiate functions, one must learn and understand differentiation rules and learn how to use derivative table.

Differentiation rules

Let and be arbitrary differentiable functions of a real variable and be some real constant. Then

is the rule for differentiating the product of functions

is the rule for differentiating quotient functions

0 height=33 width=370 style="vertical-align: -12px;"> — differentiation of a function with a variable exponent

- the rule of differentiation of a complex function

is the power function differentiation rule

Derivative of a function online

Our calculator will quickly and accurately calculate the derivative of any function online. The program will not make mistakes when calculating the derivative and will help to avoid long and tedious calculations. The online calculator will also be useful in the case when there is a need to check your solution for the correctness, and if it is incorrect, quickly find the error.

It is absolutely impossible to solve physical problems or examples in mathematics without knowledge about the derivative and methods for calculating it. The derivative is one of the most important concepts of mathematical analysis. We decided to devote today's article to this fundamental topic. What is a derivative, what is its physical and geometric meaning, how to calculate the derivative of a function? All these questions can be combined into one: how to understand the derivative?

Geometric and physical meaning of the derivative

Let there be a function f(x) , given in some interval (a,b) . The points x and x0 belong to this interval. When x changes, the function itself changes. Argument change - difference of its values x-x0 . This difference is written as delta x and is called argument increment. The change or increment of a function is the difference between the values ​​of the function at two points. Derivative definition:

The derivative of a function at a point is the limit of the ratio of the increment of the function at a given point to the increment of the argument when the latter tends to zero.

Otherwise it can be written like this:

What is the point in finding such a limit? But which one:

the derivative of a function at a point is equal to the tangent of the angle between the OX axis and the tangent to the graph of the function at a given point.


The physical meaning of the derivative: the time derivative of the path is equal to the speed of the rectilinear motion.

Indeed, since school days, everyone knows that speed is a private path. x=f(t) and time t . Average speed over a certain period of time:

To find out the speed of movement at a time t0 you need to calculate the limit:

Rule one: take out the constant

The constant can be taken out of the sign of the derivative. Moreover, it must be done. When solving examples in mathematics, take as a rule - if you can simplify the expression, be sure to simplify .

Example. Let's calculate the derivative:

Rule two: derivative of the sum of functions

The derivative of the sum of two functions is equal to the sum of the derivatives of these functions. The same is true for the derivative of the difference of functions.

We will not give a proof of this theorem, but rather consider a practical example.

Find the derivative of a function:

Rule three: the derivative of the product of functions

The derivative of the product of two differentiable functions is calculated by the formula:

Example: find the derivative of a function:

Solution:

Here it is important to say about the calculation of derivatives of complex functions. The derivative of a complex function is equal to the product of the derivative of this function with respect to the intermediate argument by the derivative of the intermediate argument with respect to the independent variable.

In the above example, we encounter the expression:

In this case, the intermediate argument is 8x to the fifth power. In order to calculate the derivative of such an expression, we first consider the derivative of the external function with respect to the intermediate argument, and then multiply by the derivative of the intermediate argument itself with respect to the independent variable.

Rule Four: The derivative of the quotient of two functions

Formula for determining the derivative of a quotient of two functions:

We tried to talk about derivatives for dummies from scratch. This topic is not as simple as it seems, so be warned: there are often pitfalls in the examples, so be careful when calculating derivatives.

With any question on this and other topics, you can contact the student service. In a short time, we will help you solve the most difficult control and deal with tasks, even if you have never dealt with the calculation of derivatives before.

Have questions?

Report a typo

Text to be sent to our editors: