Многоступенчатая ракета: Министерство обороны Российской Федерации. Для чего ракеты делают многоступенчатыми? Схема с подвесными баками

Проект разработан по просьбе венчурного инвестора из ЕС.

Стоимость выведения на орбиту космических аппаратов пока очень велика. Это объясняется высокой стоимостью ракетных двигателей, дорогой системой управления, дорогими материалами, используемыми в напряженной конструкции ракет и их двигателей, сложной и, как правило, дорогостоящей технологией их изготовления, подготовки к пуску и, главным образом, их одноразовым использованием.

Доля стоимости носителя в общей стоимости запуска космического аппарата бывает разной. Если носитель серийный, а аппарат уникальный, то около 10%. Если наоборот - может достигать 40% и более. Это очень дорого, и поэтому возникла мысль, создать ракету-носитель, которая, подобно воздушному лайнеру, взлетала бы с космодрома, совершала полет на орбиту и, оставив там спутник или космический корабль, возвращалась на космодром.

Первой попыткой реализации такой идеи было создание системы «Спейс шаттл». На основании анализа недостатков одноразовых носителей и системы «Спейс шаттл», который сделан Константином Феоктистовым (К. Феоктистов. Траектория жизни. Москва: Вагриус, 2000. ISBN 5-264-00383-1. Глава 8. Ракета как самолет) , складывается представление о качествах, которыми должна обладать хорошая ракета-носитель, обеспечивающая доставку на орбиту полезного груза с минимальными затратами и с максимальной надежностью. Она должна быть системой многоразового использования, способной совершать 100–1000 полетов. Многоразовость нужна как для снижения затрат на каждый полет (расходы на разработку и изготовление распределяются на количество полетов), так и для повышения надежности выведения полезного груза на орбиту: каждая поездка на автомобиле и полет самолета подтверждают правильность его конструкции и качественное изготовление. Следовательно, можно снижать затраты на страхование полезного груза и страхование самой ракеты. По-настоящему надежными и недорогими в эксплуатации машинами могут быть только многоразовые - такие, как паровоз, автомобиль, самолет.

Ракета должна быть одноступенчатой. Это требование, как и многоразовость, связано и с минимизацией расходов, и с обеспечением надежности. Действительно, если ракета многоступенчатая, то даже если все ее ступени благополучно возвращаются на Землю, то перед каждым стартом их надо собирать в единое целое, а проверить правильность сборки и функционирования процессов разделения ступеней после сборки невозможно, так как при каждой проверке собранная машина должна рассыпаться. Не испытываемые, не проверяемые на функционирование после сборки, соединения становятся как бы одноразовыми. И пакет, соединенный узлами с пониженной надежностью, тоже становится в какой-то степени одноразовым. Если ракета многоступенчатая, то расходы на ее эксплуатацию больше, чем на эксплуатацию одноступенчатой машины по следующим причинам:

  • Для одноступенчатой машины не требуются расходы на сборку.
  • Не нужно выделять на поверхности Земли районы приземления для посадки первых ступеней, а следовательно, не нужно платить за их аренду, за то, что эти районы не используются в хозяйстве.
  • Нет необходимости платить за транспортировку первых ступеней к месту старта.
  • Заправка многоступенчатой ракеты требует более сложной технологии, большего времени. Сборка пакета и доставка ступеней к месту старта не поддаются простейшей автоматизации и, следовательно, требуют участия большего количества специалистов при подготовке такой ракеты к очередному полету.

Ракета должна использовать в качестве топлива водород и кислород, в результате горения которых на выходе из двигателя образуются экологически чистые продукты сгорания при высоком удельном импульсе. Экологическая чистота важна не только для работ, проводимых на старте, при заправке, в случае аварии, но и в не меньшей степени во избежание вредного воздействия продуктов сгорания на озоновый слой атмосферы.

Среди самых проработанных проектов одноступенчатых космических аппаратов за рубежом стоит выделить Skylon, DC-X, Lockheed Martin X-33 и Roton. Если Skylon и X-33 - это крылатые аппараты, то DC-X и Roton это ракеты вертикального взлета и вертикальной посадки. К тому же, оба они дошли до создания тестовых образцов. Если у Roton был только атмосферный прототип для отработки посадки на авторотации, то прототип DC-X совершил несколько полетов на высоту несколько километров на жидкостном ракетном двигателе (ЖРД) на жидких кислороде и водороде.

Техническое описание ракеты «Зея»

Для радикального снижения стоимости выведения грузов в космос «Лин Индастриал» предлагает создать ракету-носитель (РН) «Зея». Это одноступенчатая, многоразовая транспортная система с вертикальным взлетом и вертикальной посадкой. В ней используются экологически безопасные и высокоэффективные компоненты топлива: окислитель - жидкий кислород, горючее - жидкий водород.

РН состоит из бака окислителя (над которым размещается теплозащитный экран для входа в атмосферу и ротор системы мягкой посадки), отсека полезной нагрузки, приборного отсека, бака горючего, хвостового отсека с двигательной установкой и посадочного устройства. Баки горючего и окислителя - сегментально-конические, несущие, композитные. Наддув бака горючего осуществляется за счет газификации жидкого водорода, а бака окислителя - за счет сжатого гелия из баллонов высокого давления. Маршевая двигательная установка состоит из 36 расположенных по окружности двигателей и сопла внешнего расширения в виде центрального тела. Управление во время работы маршевого двигателя по тангажу и рысканию осуществляется с помощью дросселирования диаметрально расположенных двигателей, по крену - с помощью восьми двигателей на газообразных компонентах топлива, расположенных под отсеком полезной нагрузки. Для управления на участке орбитального полета используются двигатели на газообразных компонентах топлива.

Схема полета «Зеи» следующая. После выхода на опорную околоземную орбиту, ракета, если это необходимо, производит орбитальные маневры для выхода на целевую орбиту, после чего, открыв отсек полезной нагрузки (массой до 200 кг), отделяет ее.

В течение одного витка по околоземной орбите с момента старта, выдав тормозной импульс, «Зея» совершает посадку в районе космодрома пуска. Высокая точность посадки обеспечивается за счет использования аэродинамического качества, создаваемого формой ракеты, для бокового маневра и маневра по дальности. Мягкая посадка осуществляется за счет снижения с использованием принципа авторотации и восьми посадочных амортизаторов.

Экономика

Ниже приведена оценка сроков и стоимости работы до первого пуска:

  • Аванпроект: 2 месяца - €2 млн
  • Создание двигательной установки, разработка композитных баков и системы управления: 12 месяцев - €100 млн
  • Создание стендовой базы, постройка прототипов, подготовка и модернизация производства, эскизный проект: 12 месяцев - €70 млн
  • Отработка узлов и систем, испытания прототипа, огневые испытания летного изделия, технический проект: 12 месяцев - €143 млн

Итого: 3,2 года, €315 млн

По нашим оценкам, себестоимость одного пуска составит €0,15 млн, а стоимость межполетного обслуживания и накладных расходов - около €0,1 млн за межпусковой период. Если установить цену запуска в €35 тыс. за 1 кг (при себестоимости €1250/кг), что близко к цене запуска на ракете «Днепр» для иностранных заказчиков, то весь пуск (200 кг полезной нагрузки) обойдется заказчику в €7 млн. Таким образом, проект окупится за 47 пусков.

Вариант «Зеи» с двигателем на трех компонентах топлива

Еще один способ увеличить эффективность одноступенчатой РН - переход на ЖРД с тремя компонентами топлива.

С начала 1970-х годов в СССР и США изучалась концепция трехкомпонентных двигателей, которые сочетали бы в себе высокое значение удельного импульса при использовании водорода в качестве горючего, и более высокую усредненную плотность топлива (а, следовательно, меньший объем и вес топливных баков), характерную для углеводородного горючего. При запуске такой двигатель работал бы на кислороде и керосине, а на больших высотах переключался на использование жидких кислорода и водорода. Такой подход, возможно, позволит создать одноступенчатый космический носитель.

В нашей стране были разработаны трехкомпонентные двигатели РД-701, РД-704 и РД0750, однако они не были доведены до стадии создания опытных образцов. НПО «Молния» в 1980-х разработала Многоцелевую авиационно-космическую систему (МАКС) на ЖРД РД-701 с топливом кислород + керосин + водород. Расчеты и конструирование трехкомпонентных ЖРД велись и в Америке (см., например, Dual-Fuel Propulsion: Why it Works, Possible Engines, and Results of Vehicle Studies, авторов James A. Martin и Alan W. Wilhite, опубликованную в мае 1979 года в Am erican Institute of Aeronautics and Astronautics (AIAA) Paper No. 79-0878).

Мы полагаем, что для трехкомпонентной «Зеи» вместо традиционно предлагаемого для подобных ЖРД керосина следует использовать жидкий метан. На это есть множество причин:

  • «Зея» в качестве окислителя использует жидкий кислород, кипящий при температуре -183 градуса Цельсия, то есть в конструкции ракеты и заправочного комплекса уже используется криогенное оборудование, а значит не будет принципиальных сложностей в замене бака керосина на бак метана при -162 градусах Цельсия.
  • Метан по эффективности превосходит керосин. Удельный импульс (УИ, мера эффективности ЖРД - отношение создаваемого двигателем импульса к расходу топлива) топливной пары метан + жидкий кислород превосходит УИ пары керосин + жидкий кислород примерно на 100 м/с.
  • Метан дешевле керосина.
  • В отличие от керосиновых в двигателях на метане почти отсутствует коксование, то есть, проще говоря, образование трудно удаляемого нагара. А, значит, такие двигатели удобнее использовать в многоразовых системах.
  • При необходимости метан можно заменить схожим по характеристикам сжиженным природным газом (СПГ). СПГ почти полностью состоит из метана, обладает схожими физико-химическими характеристиками и немного проигрывает чистому метану по эффективности. При этом СПГ в 1,5–2 раза дешевле керосина и намного доступнее. Дело в том, что Россия покрыта обширной сетью газопроводов с природным газом. Достаточно отвести ветку к космодрому и построить небольшой комплекс по сжижению газа. Также в России построен завод по производству СПГ на Сахалине и два малотоннажных комплекса по сжижению в Санкт-Петербурге. Планируется постройка еще пяти заводов в разных точках РФ. При этом для производства ракетного керосина нужны особые сорта нефти, добытые на строго определенных месторождениях, запасы которых в России истощаются.

Схема работы трехкомпонентной РН следующая. Вначале сжигается метан - топливо с высокой плотностью, но сравнительно небольшим удельным импульсом в пустоте. Затем сжигается водород - топливо с низкой плотностью и максимально высоким удельным импульсом. Оба вида топлива сжигаются в единой двигательной установке. Чем выше доля топлива первого типа, тем меньше масса конструкции, но тем больше масса топлива. Соответственно, чем выше доля топлива второго вида, тем меньше потребный запас топлива, но тем больше масса конструкции. Следовательно, можно найти оптимальное соотношение между массами жидких метана и водорода.

Мы провели соответствующие расчеты, приняв коэффициент топливных отсеков для водорода равным 0,1, а для метана - 0,05. Коэффициент топливных отсеков - это отношение конечной массы топливного отсека к массе располагаемого запаса топлива. В конечную массу топливного отсека включаются массы гарантийного запаса топлива, невырабатываемые остатки компонентов ракетного топлива и масса газов наддува.

Расчеты показали, что трехкомпонентная «Зея» будет выводить на низкую околоземную орбиту 200 кг полезной нагрузки при массе своей конструкции в 2,1 т и стартовой массе 19,2 т. Двухкомпонентная «Зея» на жидком водороде сильно проигрывает: масса конструкции - 4,8 т, а стартовая масса - 37,8 т.

Рисунок из книги Казимира Сименовича Artis Magnae Artilleriae pars prima 1650 г.

Многоступе́нчатая раке́та - летательный аппарат , состоящий из двух или более механически соединённых ракет , называемых ступенями , разделяющихся в полёте. Многоступенчатая ракета позволяет достигнуть скорости большей, чем каждая из её ступеней в отдельности.

История

Один из первых рисунков с изображением ракет был опубликован в труде военного инженера и генерала от артиллерии Казимира Сименовича, уроженца Витебского воеводства Речи Посполитой , «Artis Magnae Artilleriae pars prima» (лат. «Великое искусство артиллерии часть первая»), напечатанном в году в Амстердаме , Нидерланды . На нём - трехступенчатая ракета , в которой третья ступень вложена во вторую, а обе они вместе - в первую ступень. В головной части помещался состав для фейерверка . Ракеты были начинены твёрдым топливом - порохом . Это изобретение интересно тем, что оно более трёхсот лет назад предвосхитило направление, по которому пошла современная ракетная техника.

Впервые идея использования многоступенчатых ракет для освоения космоса высказывается в трудах К. Э. Циолковского . В г. он выпустил в свет свою новую книгу под заглавием «Космические ракетные поезда ». Этим термином К. Циолковский назвал составные ракеты или, вернее, агрегат ракет, делающих разбег по земле, потом в воздухе и, наконец, в космическом пространстве. Поезд, составленный, например, из 5 ракет, ведётся сначала первой - головной ракетой; по использовании её горючего, она отцепляется и сбрасывается на землю. Далее, таким же образом, начинает работать вторая, затем третья, четвёртая и, наконец, пятая, скорость которой будет к тому времени достаточно велика, чтобы унестись в межпланетное пространство . Последовательность работы с головной ракеты вызвана стремлением заставить материалы ракет работать не на сжатие, а на растяжение, что позволит облегчить конструкцию. По Циолковскому, длина каждой ракеты - 30 метров. Диаметры - 3 метра. Газы из сопел вырываются косвенно к оси ракет, чтобы не давить на следующие ракеты. Длина разбега по земле - несколько сот километров .

Несмотря на то, что в технических деталях ракетостроение пошло во многом по другому пути (современные ракеты, например, не «разбегаются» по земле, а взлетают вертикально, и порядок работы ступеней современной ракеты - обратный, по отношению к тому, о котором говорил Циолковкий), сама идея многоступенчатой ракеты и сегодня остаётся актуальной.

Варианты компоновки ракет. Слева направо:
1. одноступенчатая ракета;
2. двуступенчатая ракета с поперечным разделением;
3. двуступенчатая ракета с продольным разделением.
4. Ракета с внешними топливными ёмкостями, отделяемыми после исчерпания топлива в них.

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней .
При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема даёт возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток её заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для неё пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от 2-х до 8-и), располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй, и работающих одновременно. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двуступенчатой.
Существует и комбинированная схема разделения - продольно-поперечная , позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода - отечественный носитель Союз .

Уникальную схему двуступенчатой ракеты с продольным разделением имеет космический корабль Спейс Шаттл , первая ступень которого состоит из двух боковых твёрдотопливных ускорителей, а на второй ступени часть топлива содержится в баках орбитера (собственно многоразового корабля), а бо́льшая часть - в отделяемом внешнем топливном баке . Сначала двигательная установка орбитера расходует топливо из внешнего бака, а когда оно будет исчерпано, внешний бак сбрасывается и двигатели продолжают работу на том топливе, которое содержится в баках орбитера. Такая схема позволяет максимально использовать двигательную установку орбитера, которая работает на всём протяжении вывода корабля на орбиту.

При поперечном разделении ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки , испытываемой ракетой на всех участках, на которых данный переходник входит в состав ракеты.
При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.
Элементы, соединяющие части составной ракеты, сообщают ей жёсткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов . Пироболт - это крепёжный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором . При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантированно оторвать головку, а, с другой - не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подаётся импульс тока, и соединение освобождается.
Далее ступени должны быть разведены на безопасное расстояние друг от друга. (Запуск двигателя высшей ступени вблизи низшей может вызвать прогар ее топливной емкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует её полет.) При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твёрдотопливные ракетные двигатели.
На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в соотоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.
На приведённом выше снимке ракеты


АПУСК произведен с помощью многоступенчатой ракеты», - эти слова уже много раз читали мы в сообщениях о запуске первых в мире искусственных спутников Земли, о создании спутника Солнца, о запуске космических ракет к Луне. Всего одна короткая фраза, а сколько вдохновенного труда ученых, инженеров и рабочих нашей Родины скрывается за этими шестью словами!

Что же представляют собой современные многоступенчатые ракеты? Почему возникла необходимость применять для космических полетов ракеты, состоящие из большого количества ступеней? Какой технический эффект дает увеличение числа ступеней ракеты?

Попробуем кратко ответить на эти вопросы. Для осуществления полетов в космос требуются громадные запасы топлива. Они столь велики, что их невозможно поместить в баках одноступенчатой ракеты. При современном уровне инженерной науки можно построить ракету, в которой на долю топлива приходилось бы до 80- 90% ее общего веса. А для полетов на другие планеты потребные запасы топлива должны в сотни и даже в тысячи раз превосходить собственный вес ракеты и находящегося в ней полезного груза. При тех запасах топлива, которые удается поместить в баках одноступенчатой ракеты, можно достигнуть скорости полета до 3-4 км/сек. Усовершенствование ракетных двигателей, изыскание наивыгоднейших сортов топлива, применение более качественных конструкционных материалов и дальнейшее усовершенствование конструкции ракет, безусловно, позволят несколько увеличить скорость одноступенчатых ракет. Но до космических скоростей все-таки будет еще очень далеко.

Чтобы достигнуть космических скоростей, К. Э. Циолковский предложил применять многоступенчатые ракеты. Сам ученый образно назвал их «ракетными поездами». По мысли Циолковского ракетный поезд, или, как мы говорим сейчас, многоступенчатая ракета, должен состоять из нескольких ракет, укрепленных одна на другой. Нижняя ракета обычно является самой большой. Она несет на себе весь «поезд». Последующие ступени делаются все меньших и меньших размеров.

При взлете с поверхности Земли работают двигатели нижней ракеты. Они действуют до тех пор, пока не израсходуют все топливо, находящееся в ее баках. Когда баки первой ступени окажутся пустыми, она отделяется от верхних ракет, чтобы не обременять мертвым грузом их дальнейший полет. Отделившаяся первая ступень с пустыми баками некоторое время по инерции продолжает полет вверх, а затем падает на землю. Для сохранения первой ступени ради повторного использования можно обеспечить ее спуск на парашюте.

После отделения первой ступени включаются в работу двигатели второй ступени. Они начинают действовать тогда, когда ракета уже поднялась на некоторую высоту и имеет значительную скорость полета. Двигатели второй ступени разгоняют ракету дальше, увеличивая ее скорость еще на несколько километров в секунду. После израсходования всего топлива, содержащегося в баках второй ступени, сбрасывается и она. Дальнейший полет составной ракеты обеспечивает работа двигателей третьей ступени. Потом сбрасывается и третья ступень. Очередь подходит к двигателям четвертой ступени. Выполнив возложенную на них работу, они повышают скорость ракеты еще на некоторую величину, а затем уступают место двигателям пятой ступени. После сброса пятой ступени начинают работать двигатели шестой.

Так, каждая ступень ракеты последовательно увеличивает скорость полета, а последняя, верхняя ступень достигает в безвоздушном пространстве необходимой космической скорости. Если ставится задача осуществить посадку на другую планету и возвратиться обратно на Землю, то вылетевшая в космос ракета, в свою очередь, должна состоять из нескольких ступеней, последовательно включаемых при спуске на планету и при взлете с нее.

Интересно посмотреть, какой эффект дает применение на ракетах большого количества ступеней.

Возьмем одноступенчатую ракету со стартовым весом 500 т. Предположим, что этот вес распределяется следующим образом: полезный груз - 1 т, сухой вес ступени - 99,8 т и топливо - 399,2 т. Следовательно, конструктивное совершенство этой ракеты таково, что вес топлива в 4 раза превосходит сухой вес ступени, то есть вес самой ракеты без топлива и полезного груза. Число Циолковского, то есть отношение стартового веса ракеты к ее весу после израсходования всего топлива, для данной ракеты будет равно 4,96. Это число и величина скорости истечения газа из сопла двигателя определяют скорость, которую может достигнуть ракета. Попробуем теперь заменить одноступенчатую ракету двухступенчатой. Снова возьмем полезный груз в 1 т и будем считать, что конструктивное совершенство ступеней и скорость истечения газа останутся такими же, как и в одноступенчатой ракете. Тогда, как показывают расчеты, для достижения такой же скорости полета, как и в первом случае, потребуется двухступенчатая ракета с полным весом всего в 10,32 т, то есть почти в 50 раз легче, чем одноступенчатая. Сухой вес двухступенчатой ракеты составит 1,86 т, а вес топлива, помещенного в обеих ступенях, - 7,46 т. Как видим, в рассматриваемом примере замена одноступенчатой ракеты двухступенчатой позволяет в 54 раза сократить расход металла и топлива при осуществлении запуска одинакового полезного груза.

Возьмем для примера космическую ракету с полезным грузом в 1 т. Пусть эта ракета должна пробить плотные слои атмосферы и, вылетев в безвоздушное пространство, развить вторую космическую скорость - 11,2 км/сек. На наших диаграммах показано изменение веса такой космической ракеты в зависимости от весовой доли топлива в каждой ступени и от числа ступеней (см. стр. 22).

Нетрудно подсчитать, что если построить ракету, двигатели которой отбрасывают газы со скоростью 2 400 м/сек и в каждой из ступеней на долю топлива приходится лишь 75% веса, то даже при устройстве шести ступеней взлетный вес ракеты окажется очень большим - почти 5,5 тыс. т. Улучшая конструктивную характеристику ступеней ракеты, можно добиться существенного снижения стартового веса. Так, например, если на долю топлива приходится 90% веса ступени, то шестиступенчатая ракета может весить 400 т.

Исключительно большой эффект дает использование в ракетах высококалорийного топлива и повышение эффективности их двигателей. Если этим путем увеличить скорость истечения газа из сопла двигателя всего на 300 м/сек, доведя ее до величины, указанной на графике, - 2 700 м/сек, то стартовый вес ракеты можно будет сократить в несколько раз. Шестиступенчатая ракета, в которой вес топлива лишь в 3 раза превышает вес конструкции ступени, будет иметь стартовый вес примерно 1,5 тыс. т. А уменьшив вес конструкции до 10% от полного веса каждой ступени, мы можем снизить стартовый вес ракеты с тем же числом ступеней до 200 т.

Если увеличить скорость истечения газа еще на 300 м/сек, то есть принять ее равной 3 тыс. м/сек, то произойдет еще большее сокращение веса. Например, шестиступенчатая ракета при весовой доле топлива, равной 75%, будет иметь стартовый вес 600 т. Повысив весовую долю топлива до 90%, можно создать космическую ракету всего с двумя ступенями. Вес ее окажется около 850 т. Увеличив в 2 раза число ступеней, можно сократить вес ракеты до 140 т. А при шести ступенях взлетный вес снизится до 116 т.

Вот как влияет число ступеней, их конструктивное совершенство и скорость истечения газа на вес ракеты.

Почему же с ростом числа ступеней уменьшаются потребные запасы топлива, а вместе с ними и полный вес ракеты? Это происходит оттого, что, чем больше число ступеней, тем чаще будут отбрасываться пустые баки, ракета будет быстрее освобождаться от бесполезного груза. При этом с ростом числа ступеней сначала взлетный вес ракеты уменьшается очень сильно, а затем эффект от увеличения числа ступеней становится менее значительным. Можно также отметить, как это хорошо видно на приведенных графиках, что для ракет с относительно плохой конструктивной характеристикой увеличение числа ступеней дает больший эффект, чем для ракет с высоким процентным содержанием топлива в каждой ступени. Это вполне понятно. Если корпуса каждой ступени очень тяжелые, то их надо как можно быстрее сбрасывать. А если корпус имеет очень малый вес, то он не слишком обременяет ракеты и частые сбросы пустых корпусов уже не дают такого большого эффекта.


При полете ракет на другие планеты потребный расход топлива не ограничивается тем количеством, которое необходимо для разгона при взлете с Земли. Подлетая к другой планете, космический корабль попадает в сферу ее притяжения и начинает приближаться к ее поверхности с увеличивающейся скоростью. Если планета лишена атмосферы, способной погасить хотя бы часть скорости, то ракета при падении на поверхность планеты разовьет такую же скорость, какая необходима для отлета с этой планеты, то есть вторую космическую скорость. Величина второй космической скорости, как известно, различна для каждой планеты. Например, для Марса она равна 5,1 км/сек, для Венеры - 10,4 км/сек, для Луны - 2,4 км/сек. В том случае, когда ракета подлетит к сфере притяжения планеты, обладая некоторой скоростью относительно последней, скорость падения ракеты окажется еще большей. Например, вторая советская космическая ракета достигла поверхности Луны со скоростью 3,3 км/сек. Если ставится задача обеспечить плавную посадку ракеты на поверхность Луны, то на борту ракеты надо иметь дополнительные запасы топлива. Чтобы погасить какую-либо скорость, требуется израсходовать столько же топлива, сколько необходимо для того, чтобы ракета развила такую же скорость. Следовательно, космическая ракета, предназначенная для безопасной доставки на лунную поверхность какого-нибудь груза, должна нести значительные запасы топлива. Одноступенчатая ракета с полезным грузом в 1 т должна иметь вес 3-4,5 т в зависимости от ее конструктивного совершенства.

Раньше мы показали, какой громадный вес должны иметь ракеты, чтобы унести в космическое пространство груз в 1 т. А теперь видим, что из этого груза только третья или даже четвертая доля может быть безопасно опущена на поверхность Луны. Остальное должно приходиться на топливо, баки для его хранения, двигатель и систему управления.

Какой же в итоге должен быть стартовый вес космической ракеты, предназначенной для безопасной доставки на поверхность Луны научной аппаратуры или иного полезного груза весом в 1 т?

Для того чтобы дать представление о кораблях такого типа, на нашем рисунке условно изображена в разрезе пятиступенчатая ракета, предназначенная для доставки на поверхность Луны контейнера с научной аппаратурой весом в 1 т. В основу расчета этой ракеты были положены технические данные, приводимые в большом количестве книг (например, в книгах В. Феодосьева и Г. Синярева «Введение в ракетную технику» и Саттона «Ракетные двигатели»).

Были взяты ракетные двигатели, работающие на жидком топливе. Для подачи топлива в камеры сгорания предусмотрены турбонасосные агрегаты, приводимые в действие продуктами разложения перекиси водорода. Средняя скорость истечения газа для двигателей первой ступени принята равной 2 400 м/сек. Двигатели верхних ступеней работают в сильно разреженных слоях атмосферы и в безвоздушном пространстве, поэтому их эффективность оказывается несколько большей и для них скорость истечения газа принята равной 2 700 м/сек. Для конструктивных характеристик ступеней были приняты такие значения, которые встречаются в ракетах, описанных в технической литературе.

При выбранных исходных данных получились следующие весовые характеристики космической ракеты: взлетный вес- 3 348 т, в том числе 2 892 т - топливо, 455 т - конструкция и 1 т - полезный груз. Вес по отдельным ступеням распределился так: первая ступень - 2 760 т, вторая - 495 т, третья - 75,5 т, четвертая - 13,78 т, пятая - 2,72 т. Высота ракеты достигла 60 м, диаметр нижней ступени - 10 м.

На первой ступени поставлено 19 двигателей с тягой по 350 т каждый. На второй - 3 таких же двигателя, на третьей - 3 двигателя с тягой по 60 т. На четвертой - один с тягой 35 т и на последней ступени - двигатель с тягой 10 т.

При взлете с поверхности Земли двигатели первой ступени разгоняют ракету до скорости 2 км/сек. После сброса пустого корпуса первой ступени включаются двигатели следующих трех ступеней, и ракета приобретает вторую космическую скорость.

Далее ракета по инерции летит к Луне. Приблизившись к ее поверхности, ракета поворачивается соплом вниз. Включается двигатель пятой ступени. Он гасит скорость падения, и ракета плавно опускается на лунную поверхность.

Приведенный рисунок и относящиеся к нему расчеты, конечно, не представляют собой реального проекта лунной ракеты. Они приведены лишь для того, чтобы дать первое представление о масштабах космических многоступенчатых ракет. Совершенно ясно, что конструкция ракеты, ее размеры и вес зависят от уровня развития науки и техники, от материалов, которыми располагают конструкторы, от применяемого топлива и качества ракетных двигателей, от мастерства ее строителей. Создание космических ракет представляет безграничные просторы для творчества ученых, инженеров, технологов. В этой области еще предстоит сделать много открытий и изобретений. И с каждым новым достижением будут меняться характеристики ракет.

Как современные воздушные корабли типа «ИЛ-18», «ТУ-104», «ТУ-114» не похожи на аэропланы, летавшие в начале этого века, так и космические ракеты будут непрерывно совершенствоваться. Со временем для полетов в космос в ракетных двигателях будет использоваться не только энергия химических реакций, но и другие источники энергии, например энергия ядерных процессов. С изменением типов ракетных двигателей изменится и конструкция самих ракет. Но замечательной идее К. Э. Циолковского о создании «ракетных поездов» всегда будет принадлежать почетная роль в исследовании бескрайных просторов космоса.

На рис. 22 показано, что траектория баллистической ракеты, а следовательно, и дальность ее полета зависит от начальной скорости V 0 и угла Θ 0 между этой скоростью и горизонтом. Этот угол называется углом бросания.

Пусть, например, угол бросания равен Θ 0 = 30°. В этом случае ракета, начавшая свой баллистический полет в точке 0 со скоростью V 0 = 5 км/сек, пролетит по эллиптической кривой II. При V 0 = 8 км/сек ракета пролетит по эллиптической кривой III, при V 0 = 9 км/сек - по кривой IV. Когда скорость будет увеличена до 11,2 км/сек, траектория из замкнутой эллиптической кривой превратится в незамкнутую параболическую и ракета уйдет из сферы притяжения земли (кривая V). При еще большей скорости уход ракеты будет совершаться по гиперболе (VI). Так меняется траектория ракеты при изменении начальной скорости, хотя угол бросания остается неизменным.

Если сохранять постоянной начальную скорость, а менять только угол бросания, то траектория ракеты будет претерпевать не менее значительные изменения.

Пусть, например, начальная "скорость равна V 0 = 8 км/час. Если ракету запустить вертикально вверх (угол бросания Θ 0 = 90°), то теоретически она поднимется на высоту, равную радиусу Земли, и вернется на Землю недалеко от старта (VII). При Θ 0 = 30° ракета полетит по уже рассмотренной нами эллиптической траектории (кривая III). Наконец при Θ 0 = 0° (запуск параллельно горизонту) ракета превратится в спутника Земли с круговой орбитой (кривая I).

Эти примеры показывают, что только путем изменения угла бросания дальность ракет при той же начальной скорости 8 км/сек может иметь диапазон от нуля до бесконечности.

Под каким углом ракета начнет свой баллистический полет? Это зависит от программы управления, которая задана ракете. Можно, например, для каждой начальной скорости выбрать наивыгоднейший (оптимальный) угол бросания, при котором дальность полета будет наибольшей. По мере увеличения начальной скорости этот угол уменьшается. Получающиеся при этом примерные значения дальности, высоты и времени полета показаны в табл. 4.

Таблица 4

Если угол бросания можно менять произвольно, то изменение начальной скорости ограничено, и увеличение ее на каждый 1 км/сек связано с большими техническими проблемами.

К. Э. Циолковским дана формула, позволяющая определить идеальную * скорость ракеты в конце ее разгона двигателями:

V ид = V ист · ln · G нач /G кон,

где V ид - идеальная скорость ракеты в конце активного участка;

V ист - скорость истечения газов из реактивного сопла двигателя;

G нач - начальный вес ракеты;

G кон - конечный вес ракеты;

ln - знак натурального логарифма.

С величиной скорости истечения газов из сопла ракетного двигателя мы познакомились в предыдущем разделе. Для жидких топлив, приведенных в табл. 3, эти скорости ограничены величиной 2200 - 2600 м/сек (или 2,2 - 2,6 км/сек), а для твердых топлив - величиной 1,6 - 2,0 км/сек.

G нач обозначает начальный вес, т. е. полный вес ракеты перед стартом, а G кон - ее конечный вес в конце разгона (после израсходования топлива или выключения двигателей). Отношение этих весов G нач /G кон, входящее в формулу, называется числом Циолковского и косвенно характеризует вес топлива, израсходованного на разгон ракеты. Очевидно, чем больше число Циолковского, тем большую скорость разовьет ракета и, следовательно, тем дальше она пролетит (при прочих равных условиях), Однако число Циолковского, так же как и скорость истечения газов из сопла, имеет свои ограничения.

На рис. 23 показаны разрез типовой одноступенчатой ракеты и ее весовая схема. Помимо баков с топливом, на ракете имеются двигатели, органы и системы управления, обшивка, полезный груз, имеются там и различные конструктивные элементы, вспомогательное оборудование. Поэтому конечный вес ракеты не может быть во много раз меньше ее начального веса. Например, немецкая ракета V-2 весила без топлива 3,9 т, а с топливом 12,9 т. Значит число Циолковского этой ракеты было равно: 12,9/3,9 = 3,31. На современном уровне развития зарубежного ракетостроения это отношение у иностранных ракет достигает величины 5 - 7.

Подсчитаем идеальную скорость одноступенчатой ракеты, приняв V 0 = 2,6 км/сек. и G нач /G кон = 7,

V ид = 2,6 · ln 7 = 2,6 · 1,946 ≈ 5 км/сек.

Из табл. 4 видно, что такая ракета способна достичь дальности порядка 3 200 км. Однако ее фактическая скорость будет меньше 5 км/сек. поскольку двигатель расходует свою энергию не только на разгон ракеты, но и на преодоление сопротивления воздуха, на преодоление силы земного притяжения. Фактическая скорость ракеты составит всего 75 - 80% от идеальной. Следовательно, она будет иметь начальную скорость около 4 км/сек и дальность не более 1800 км * .

* (Дальность, приведенная в табл. 4, дана приближенно, поскольку при ее подсчете не учитывался ряд факторов. Например, не учитывались участки траектории, лежащие в плотных слоях атмосферы, влияние вращения Земли. При стрельбе в восточном направлении дальность полета баллистических ракет получается большей, так как к их скорости относительно Земли прибавляется скорость вращения самой Земли. )

Для создания межконтинентальной баллистической ракеты, запуска искусственных спутников Земли и космических кораблей, а тем более для посылки космических ракет на Луну и планеты необходимо сообщить ракете-носителю значительно большую скорость. Так, для ракеты с дальностью 9000 - 13000 км необходима начальная скорость порядка 7 км/сек. Первая космическая скорость, которую необходимо сообщить ракете, чтобы она могла стать спутником Земли с малой высотой орбиты, равна, как известно, 8 км/сек.

Для выхода из сферы притяжения Земли ракету надо разогнать до второй космической скорости - 11,2 км/сек, для облета Луны (без возвращения на Землю) требуется скорость более 12 км/сек. Облет Марса без возвращения на Землю можно осуществить при начальной скорости около 14 км/сек, а с возвращением на орбиту вокруг Земли - около 27 км/сек. Скорость 48 км/сек требуется для сокращения продолжительности полета к Марсу и обратно до трех месяцев. Увеличение скорости ракеты, в свою очередь, требует расходования все возрастающего количества топлива на разгон.

Пусть, например, мы построили ракету, весящую без топлива 1 кг. Если мы захотим сообщить ей скорость 3, 6, 9 и 12 км/сек, то сколько топлива потребуется для этого заправить в ракету и сжечь при разгоне? Необходимое количество топлива * показано в табл. 5.

* (При скорости истечения 3 км/сек. )

Таблица 5

Не подлежит сомнению, что в корпусе ракеты, "сухой" вес которой равен всего 1 кг, нам удастся вместить 1,7 кг топлива. Но очень сомнительно, что в ней можно разместить его 6,4 кг. И, очевидно, совершенно невозможно заправить в нее 19 или 54 кг топлива. Простой, но достаточно прочный бак, вмещающий такое количество топлива, весит уже значительно больше килограмма. Например, известная автомобилистам двадцатилитровая канистра весит около 3 кг. "Сухой" же вес ракеты, помимо бака, должен включать в себя вес двигателей, конструкции, полезного груза и т. д.

Наш великий соотечественник К. Э. Циолковский нашел другой (и пока единственный) путь, позволяющий решить такую трудную задачу, как достижение ракетой тех скоростей, которые сегодня требуются практикой. Этот путь состоит в создании многоступенчатых ракет.

Типовая многоступенчатая ракета изображена на рис. 24. Она состоит из полезного груза И нескольких отделяемых ступеней с силовой установкой и запасом топлива в каждой. Двигатель первой ступени сообщает полезному грузу, а также второй и третьей ступеням (второй субракете) скорость ν 1 . После израсходования топлива первая ступень отделяется от остальной части ракеты и падает на землю, а на ракете включается двигатель второй ступени. Под действием его тяги оставшаяся часть ракеты (третья субракета) приобретает дополнительную скорость ν 2 . Затем вторая ступень после израсходования топлива также отделяется от оставшейся части ракеты и падает на землю. В это время включается двигатель третьей ступени и сообщает полезному грузу добавочную скорость ν 3 .

Таким образом, в многоступенчатой ракете полезный груз разгоняется многократно. Полная идеальная скорость трехступенчатой ракеты будет равна сумме трех идеальных скоростей, полученных от каждой ступени:

V ид 3 = ν 1 + ν 2 + ν 3 .

Если скорость истечения газов из двигателей всех ступеней одинакова и после отделения каждой из них не меняется отношение начального веса оставшейся части ракеты к конечному, то приросты скорости ν 1 , ν 2 и ν 3 будут равны между собой. Тогда можно считать, что скорость ракеты, состоящей из трех (или вообще п) ступеней, будет равна утроенной (или увеличенной в n раз) скорости одноступенчатой ракеты.

Фактически в каждой ступени многоступенчатых ракет могут стоять двигатели, дающие разные скорости истечения; постоянное отношение весов может не выдерживаться; сопротивление воздуха по мере изменения скорости полета и притяжение Земли по мере удаления от нее изменяются. Поэтому конечная скорость многоступенчатой ракеты не может быть определена простым умножением скорости одноступенчатой ракеты на число ступеней * . Но остается справедливым, что путем увеличения числа ступеней скорость ракеты может быть увеличена во много раз.

* (Следует также иметь в виду, что между выключением одной ступени и включением другой может быть временной интервал, в течение которого ракета летит по инерции. )

Кроме того, многоступенчатая ракета может обеспечить заданную дальность полета одного и того же полезного груза при значительно меньшем общем расходе топлива и стартовом весе, чем одноступенчатая ракета. Неужели человеческий разум сумел обойти законы природы? Нет. Просто человек, познав эти законы, может экономить на топливе и весе конструкции, выполняя поставленную задачу. В одноступенчатой ракете мы от самого старта и до конца активного участка разгоняем весь ее "сухой" вес. В многоступенчатой ракете мы этого не делаем. Так, в трехступенчатой ракете вторая ступень уже не тратит топлива на разгон "сухого" веса первой ступени, ибо последняя отбрасывается. Третья ступень также не тратит топлива на разгон "сухого", веса первой и второй ступеней. Она разгоняет только себя и полезный груз. Третью (и вообще последнюю) ступень можно было бы уже не отсоединять от головной части ракеты, потому что дальнейшего разгона не требуется. Но во многих случаях она все же отделяется. Так, отделение последних ступеней практикуется у ракет-носителей спутников, космических ракет и таких боевых ракет, как "Атлас", "Титан", "Минитмэн", "Юпитер", "Поларис" и др.

Когда в космос запускается научная аппаратура, помещенная в головной части ракеты, то предусматривается отделение последней ступени. Это необходимо для правильного функционирования аппаратуры. Когда запускается спутник, также предусматривается его отделение от последней ступени. Благодаря этому уменьшается сопротивление и он может существовать длительное время. При запуске боевой баллистической ракеты предусматривается отделение последней ступени от боевой головки, вследствие этого труднее становится обнаружить боевую головку и попасть в нее антиракетой. Более того, отделившаяся при снижении ракеты последняя ступень становится ложной целью. Если при возвращении в атмосферу предусмотрено управлять боевой головкой или стабилизировать ее полет, то без последней ступени управлять ею легче, так как она обладает меньшей массой. Наконец, если последнюю ступень не отделить от боевой головки, то надо будет защищать ту и другую от нагрева и сгорания, что невыгодно.

Безусловно, задача получения высоких скоростей движения будет решаться не только созданием многоступенчатых ракет. Этот способ имеет и свои недостатки. Дело в том, что с увеличением числа ступеней сильно осложняется конструкция ракет. Появляется необходимость в сложных механизмах для отделения ступеней, Поэтому ученые всегда будут стремиться к минимальному числу ступеней, а для этого, прежде всего необходимо научиться получать все большие и большие скорости истечения продуктов сгорания или продуктов какой-либо другой реакции.

Каково устройство многоступенчатой ракеты разберем на классическом примере ракеты для полета в космос, описанном в трудах Циолковского, родоначальника ракетостроения. Именно им первым была опубликована принципиальная идея изготовления ракеты многоступенчатой.

Принцип действия ракеты.

Для того чтобы преодолеть земное притяжение, ракете необходим большой запас топлива, при этом, чем больше топлива мы берем, тем больше получается масса ракеты. Поэтому для уменьшения массы ракеты их строят на принципе многоступенчатости. Каждую ступень можно рассматривать как отдельную ракету с собственным ракетным двигателем и запасом топлива для полета.

Устройство ступеней космической ракеты.


Первая ступень космической ракеты
самая большая, в ракете для полета космос двигателей 1ой ступени может быть до 6 и более чем тяжелей груз необходимо вывести в космос, тем больше двигателей в первой ступени ракеты.

В классическом варианте их три, расположены симметрично по краям равнобедренного треугольника как бы опоясывающего ракету по периметру. Эта ступень самая большая и мощная, именно она отрывает ракету . Когда топливо в первой ступени ракеты израсходовано вся ступень отбрасывается.

После этого движением ракеты управляют двигатели второй ступени. Их иногда называют разгонными, поскольку именно с помощью двигателей второй ступени ракета достигает первой космической скорости, достаточной для выхода на околоземную орбиту.

Так может повторяться несколько раз, при этом каждая ступень ракеты весит меньше предыдущей, поскольку с набором высоты сила притяжения Земли уменьшается.

Сколько раз повторяется этот процесс столько и ступеней содержит космическая ракета. Последняя ступень ракеты предназначена для маневрирования (маршевые двигатели для коррекции полета имеются в каждой ступени ракеты) и доставки полезного груза и космонавтов к месту назначения.

Мы рассмотрели устройство и принцип действия ракеты , точно также устроены и принципиально не отличаются от космических ракет баллистические многоступенчатые ракеты, страшное оружие несущее ядерное оружие. Они способны полностью уничтожить как жизнь на всей планете, так и саму .

Многоступенчатые баллистические ракеты выходят на околоземную орбиту и уже оттуда поражают наземные цели разделившимися боеголовками с ядерными зарядами. При этом чтобы долететь до самой удаленной точки им достаточно 20-25 минут.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: