Колебательное и волновое движение. Колебательное движение. Свободные колебания. Колебательные системы (Ерюткин Е.С.)

1.Определение колебательного движения

Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования. Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения. Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.

Механические колебания Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

Волнение моря, качание маятника часов, вибрации корпуса корабля, биение человеческого сердца, звук, радиоволны, свет, переменные токи - все это коле­бания.

В процессе колебаний значения физических величин, опреде­ляющих состояние системы, через равные или неравные проме­жутки времени повторяются. Колебания называются периодическими , если значения изме­няющихся физических величин повторяются через равные проме­жутки времени.

Наименьший промежуток времени Т, черезкото­рый значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называетсяпериодом колебаний.

Число полных колебаний n , совершаемых за единицу времени, называется частотой колебаний этой величины и обозначается через ν . Период и частота колебаний связаны соотноше­нием:

Любое колебание обусловлено тем или иным воздействием на колеблющуюся систему. В зависимости от характера воздействия, вызывающего колебания, различают следующие виды периодических колебаний: свободные, вынужденные, автоколебания, параметри­ческие.

Свободные колебания - это колебания, происходящие в систе­ме, предоставленной самой себе, после выведения ее из состояния устойчивого равновесия (например, колебания груза на пружине).

Вынужденные колебания - это колебания, обусловленные внешним периодическим воздействием (например, электромагнит­ные колебания в антенне телевизора).

Механические колебания

Автоколебания - свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания - это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

х - колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) - это может быть не целое число.

Т - период колебаний Период - время одного полного колебания.

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t - время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, - колебательного движения. Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний. Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Колебание - это периодическое изменение любой физической величины: колебания температуры, колебания цвета светофора и т. д. (рис. 1).

Рис. 1. Примеры колебаний

Колебания - самый распространенный вид движения в природе. Если касаться вопросов, связанных с механическим движением, то это самый распространенный вид механического движения. Обычно говорят так: движение, которое с течением времени полностью или частично повторяется, называется колебанием . Механические колебания - это периодические изменение физических величин, характеризующих механическое движение: положения тела, скорости, ускорения.

Примеры колебаний: колебание качелей, шевеление листьев и качание деревьев под воздействием ветра, маятник в часах, движение человеческого тела.

Рис. 2. Примеры колебаний

Наиболее распространенными механическими колебательными системами являются:

  • Грузик, закрепленный на пружине - пружинный маятник . Сообщая маятнику начальную скорость, его выводят из состояния равновесия. Маятник совершает колебания вверх-вниз. Для совершения колебаний в пружинном маятнике имеет значение количество пружин и их жесткость.

Рис. 3. Пружинный маятник

  • Математический маятник - твердое тело, подвешенное на длинной нити, совершающее колебание в поле тяготения Земли.

Рис. 4. Математический маятник

Условия существования колебаний

  • Наличие колебательной системы. Колебательная система - это система, в которой могут существовать колебания.

Рис. 5. Примеры колебательных систем

  • Точка устойчивого равновесия. Именно вокруг этой точки и совершаются колебания.

Рис. 6. Точка равновесия

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное. Устойчивое: когда система стремится вернуться в первоначальное положение при малом внешнем воздействии. Именно наличие устойчивого равновесия является важным условием того, что в системе могут происходить колебания.

  • Запасы энергии, которые приводят к тому, что совершаются колебания. Ведь колебания сами по себе не могут совершаться, мы должны вывести систему из равновесия, чтобы происходили эти колебания. То есть сообщить энергию этой системе, чтобы потом колебательная энергия превращалась в то движение, которое мы рассматриваем.

Рис. 7 Запасы энергии

  • Малое значение сил трения. Если эти силы будут большими, то о колебаниях речи идти не может.

Решение главной задачи механики в случае колебаний

Механические колебания - это один из видов механического движения. Главная задача механики - это определение положения тела в любой момент времени. Получим закон зависимости для механических колебаний.

Закон, который необходимо найти, мы постараемся угадать, а не вывести математически, потому что уровня знаний девятого класса недостаточно для строгих математических выкладок. В физике очень часто пользуются таким методом. Сначала пытаются предсказать справедливое решение, а потом его доказывают.

Колебания - это периодический или почти периодический процесс. Это значит, что закон - периодическая функция. В математике периодическими функциями являются или .

Закон не будет являться решением главной задачи механики, так как - безразмерная величина, а единицы измерения - метры. Усовершенствуем формулу, добавив перед синусом множитель, соответствующий максимальному отклонению от положения равновесия - амплитудное значение: . Обратите внимание, что единицами измерения времени являются секунды. Подумайте, что значит, например, ? Данное выражение не имеет смысла. Выражение под синусом должно измеряться в градусах или радианах. В радианах измеряется такая физическая величина, как фаза колебания - произведение циклической частоты и времени.

Свободные гармонические колебания описывает закон:

Используя это уравнение, можно найти положение колеблющегося тела в любой момент времени.

Энергия и равновесие

Исследуя механические колебания, особый интерес следует уделять понятию положения равновесия - необходимому условию наличия колебаний.

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное.

На рисунке 8 изображен шарик, который находится в сферическом желобе. Если вывести шарик из положения равновесия, на него будут действовать следующие силы: сила тяжести , направленная вертикально вниз, сила реакции опоры , направленная перпендикулярно касательной по радиусу. Векторная сумма этих двух сил будет равнодействующей, которая направлена обратно к положению равновесия. То есть шарик будет стремится вернуться в положение равновесия. Такое положение равновесия называется устойчивым .

Рис. 8. Устойчивое равновесие

Положим шарик на выпуклый сферический желоб и немного выведем его из положения равновесия (рис. 9). Сила тяжести по-прежнему направлена вертикально вниз, сила реакции опоры по-прежнему перпендикулярна касательной. Но теперь равнодействующая сила направлена в сторону, противоположную начальному положению тела. Шарик будет стремится скатиться вниз. Такое положение равновесия называется неустойчивым .

Рис. 9. Неустойчивое равновесие

На рисунке 10 шарик находится на горизонтальной плоскости. Равнодействующая двух сил в любой точке на плоскости будет одинаковой. Такое положение равновесия называется безразличным .

Рис. 10. Безразличное равновесие

При устойчивом и неустойчивом равновесии шарик стремится занять такое положение, в котором его потенциальная энергия будет минимальной .

Всякая механическая система стремится самопроизвольно занять такое положение, в котором ее потенциальная энергия будет минимальной. Например, нам комфортнее лежать, чем стоять.

Итак, необходимо дополнить условие существования колебаний тем, что равновесие обязательно должно быть устойчивым.

Если данному маятнику, колебательной системе сообщили энергию, то колебания, происходящие в результате такого действия, будут называться свободными . Более распространенное определение: свободными называют колебания , которые происходят только под действием внутренних сил системы.

Свободные колебания еще называют собственными колебаниями данной колебательной системы, данного маятника. Свободные колебания являются затухающими. Они рано или поздно затухают, так как действует сила трения. В данном случае она хоть и малая величина, но не нулевая. Если никакая дополнительная сила не вынуждает двигаться тело, колебания прекращаются.

Уравнение зависимости скорости и ускорения от времени

Для того чтобы понять, меняются ли скорость и ускорение при колебаниях, обратимся к математическому маятнику.

Маятник вывели из положения равновесия, и он начинает совершать колебания. В крайних точках колебания скорость меняет свое направление, причем в точке равновесия скорость максимальная. Если меняется скорость, значит, у тела есть ускорение. Будет ли такое движение равноускоренным? Конечно, нет, так по мере увеличения (уменьшения) скорости меняется и ее направление. Это значит, что ускорение также будет меняться. Наша задача - получить законы, по которым будут меняться проекция скорости и проекция ускорения со временем.

Координата со временем меняется по гармоническому закону, по закону синуса или косинуса. Логично предположить, что скорость и ускорение также будут меняться по гармоническому закону.

Закон изменения координаты:

Закон, по которому будет меняться проекция скорости со временем:

Данный закон также является гармоническим, но если координата меняется со временем по закону синуса, то проекция скорости - по закону косинуса. Координата в положении равновесия равна нулю, скорость же в положении равновесия максимальная. И наоборот, там, где координата максимальная, скорость равна нулю.

Закон, по которому будет меняться проекция ускорения со временем:

Знак минус появляется, поскольку при приращении координаты возвращающая сила направлена в противоположную сторону. По второму закону Ньютона, ускорение направлено туда же, куда и результирующая сила. Итак, если координата растет, ускорение растет по модулю, но противоположно по направлению, и наоборот, о чем и говорит знак минус в уравнении.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «eduspb.com» ()
  3. Интернет-портал «physics.ru» ()
  4. Интернет-портал «its-physics.org» ()

Домашнее задание

  1. Что такое свободные колебания? Приведите несколько примеров таких колебаний.
  2. Вычислите частоту свободных колебаний маятника, если длина его нити 2 м. Определите, сколько времени будут длиться 5 колебаний такого маятника.
  3. Чему равен период свободных колебаний пружинного маятника, если жесткость пружины 50 Н/м, а масса груза 100 г?

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: