Choosing a future profession for a child. How to choose a profession for a teenager? "I know the password, I see the landmark"

We make cottage cheese

Grandmothers, who are over 50 years old, remember well how they themselves made cottage cheese for their children. You can show this process to a child.

Warm the milk by pouring a little lemon juice into it (calcium chloride can also be used). Show the children how the milk immediately curdled into large flakes with whey on top.

Drain the resulting mass through several layers of gauze and leave for 2-3 hours.

You've made a wonderful curd.

Pour syrup over it and offer the child for dinner. We are sure that even those children who do not like this dairy product will not be able to refuse a delicacy prepared with their own participation.

Src="https://vk.com/images/emoji/2744.png">How to make ice cream? src="https://vk.com/images/emoji/2744.png">

For ice cream you will need: cocoa, sugar, milk, sour cream. You can add grated chocolate, waffle crumbs or small pieces of cookies to it.

Mix two tablespoons of cocoa, one tablespoon of sugar, four tablespoons of milk and two tablespoons of sour cream in a bowl. Add cookie crumbs and chocolate. Ice cream is ready. Now it needs to be cooled down.

Take a larger bowl, put ice in it, sprinkle it with salt, mix. Place a bowl of ice cream on top of ice and cover with a towel to keep heat out. Stir ice cream every 3-5 minutes. If you have enough patience, then after about 30 minutes the ice cream will thicken and you can try it. Delicious?

How does our homemade refrigerator work? It is known that ice melts at a temperature of zero degrees. Salt also delays the cold, does not allow the ice to melt quickly. Therefore, salt ice keeps cold longer. Moreover, the towel does not allow warm air to penetrate to the ice cream. And the result? Ice cream is beyond praise!

Let's beat down the butter

If you live in the summer in the country, then you probably take natural milk from a thrush. Do experiments with milk with the children.

Prepare a liter jar. Fill it with milk and refrigerate for 2-3 days. Show the children how the milk has separated into lighter cream and heavy skimmed milk.

Collect the cream in a jar with an airtight lid. And if you have patience and free time, then shake the jar for half an hour in turns with the children until the balls of fat merge together and form oil lumps.

Believe me, children have never eaten such delicious butter.

Homemade lollipops

Cooking is a fun activity. Now let's make homemade lollipops.

To do this, you need to prepare a glass of warm water, in which to dissolve as much granulated sugar as it can dissolve. Then take a straw for a cocktail, tie a clean thread to it, attaching a small piece of pasta to the end of it (it is best to use small pasta). Now it remains to put the straw on top of the glass, across, and lower the end of the thread with pasta into the sugar solution. And be patient.

When the water from the glass begins to evaporate, the sugar molecules will begin to approach and sweet crystals will begin to settle on the thread and on the pasta, taking on bizarre shapes.

Let your little one taste the lollipop. Delicious?

The same lollipops will be much tastier if jam syrup is added to the sugar solution. Then you get lollipops with different tastes: cherry, blackcurrant and others that he wants.

"Roasted" sugar

Take two pieces of refined sugar. Moisten them with a few drops of water to make it moist, put in a stainless steel spoon and heat it for a few minutes over gas until the sugar melts and turns yellow. Don't let it burn.

As soon as the sugar turns into a yellowish liquid, pour the contents of the spoon onto the saucer in small drops.

Taste your candies with your children. Liked? Then open a candy factory!

Changing the color of cabbage

Together with your child, prepare a salad of finely chopped red cabbage, grated with salt, and pour it with vinegar and sugar. Watch the cabbage turn from purple to bright red. This is the effect of acetic acid.

However, as the salad is stored, it may again turn purple or even turn blue. This happens because acetic acid is gradually diluted with cabbage juice, its concentration decreases and the color of the red cabbage dye changes. These are the transformations.

Why are unripe apples sour?

Unripe apples are high in starch and contain no sugar.

Starch is an unsweetened substance. Let the child lick the starch, and he will be convinced of this. How do you know if a product contains starch?

Make a weak solution of iodine. Drop them in a handful of flour, starch, on a piece of raw potato, on a slice of an unripe apple. The blue color that appears proves that all these products contain starch.

Repeat the experiment with the apple when it is fully ripe. And you will probably be surprised that you will no longer find starch in an apple. But now it has sugar in it. So, fruit ripening is a chemical process of converting starch into sugar.

edible glue

Your child needed glue for crafts, but the jar of glue was empty? Don't rush to the store to buy. Weld it yourself. What is familiar to you is unusual to a child.

Cook him a small portion of thick jelly, showing him each of the steps of the process. For those who do not know: in boiling juice (or in water with jam), you need to pour, mixing thoroughly, a solution of starch diluted in a small amount of cold water, and bring to a boil.

I think the child will be surprised that this glue-jelly can be eaten with a spoon, or you can glue crafts with it.

Homemade sparkling water

Remind your child that he is breathing air. Air is made up of various gases, but many of them are invisible and odorless, making them difficult to detect. Carbon dioxide is one of the gases that make up the air and ... carbonated water. But it can be isolated at home.

Take two straws for a cocktail, but of different diameters, so that a few millimeters narrow fits snugly into a wider one. It turned out a long straw, made up of two. Make a vertical hole in the cork of a plastic bottle with a sharp object and insert either end of the straw there.

If there are no straws of different diameters, then you can make a small vertical incision in one and stick it into another straw. The main thing is to get a tight connection.

Pour water diluted with any jam into a glass, and pour half a tablespoon of soda into a bottle through a funnel. Then pour vinegar into the bottle - about one hundred milliliters.

Now you need to act very quickly: stick the cork with a straw into the bottle, and dip the other end of the straw into a glass of sweet water.

What's going on in the glass?

Explain to your child that the vinegar and baking soda have begun to actively interact with each other, releasing carbon dioxide bubbles. It rises up and passes through a straw into a glass with a drink, where bubbles come to the surface of the water. Here is sparkling water and ready.

Drown and eat

Wash two oranges well. Put one of them in a bowl of water. He will swim. And even if you try hard, you won't be able to drown him.

Peel the second orange and put it in the water. Well? Do you believe your eyes? The orange has sunk.

How so? Two identical oranges, but one drowned and the other floated?

Explain to your child: “There are a lot of air bubbles in an orange peel. They push the orange to the surface of the water. Without the peel, the orange sinks because it is heavier than the water it displaces.

About the benefits of milk

Oddly enough, the best way to learn why you need to drink milk is to do an experiment with bones.

Take the eaten chicken bones, wash them properly, let them dry. Then pour vinegar in a bowl so that it covers the bones completely, close the lid and leave for a week.

After seven days, drain the vinegar, carefully examine and touch the bones. They have become flexible. Why?

It turns out that calcium gives strength to bones. Calcium dissolves in acetic acid, and the bones lose their hardness.

You want to ask: “What does milk have to do with it?”

Milk is known to be rich in calcium. Milk is useful because it replenishes our body with calcium, which means it makes our bones hard and strong.

How to get drinking water from salt water?

Pour water with your child into a deep basin, add two tablespoons of salt there, stir until the salt dissolves. Place washed pebbles on the bottom of an empty plastic cup so that it does not float up, but its edges should be above the water level in the basin. Stretch the film from above, tying it around the pelvis. Squeeze the film in the center over the glass and put another pebble in the recess. Place your basin in the sun.

After a few hours, unsalted, clean drinking water will accumulate in the glass.

This is explained simply: the water begins to evaporate in the sun, the condensate settles on the film and flows into an empty glass. Salt does not evaporate and remains in the pelvis.

Now that you know how to get fresh water, you can safely go to the sea and not be afraid of thirst. There is a lot of water in the sea, and you can always get the purest drinking water from it.

live yeast

A well-known Russian proverb says: "The hut is red not with corners, but with pies." We don't bake pies, though. Although, why not? Moreover, we always have yeast in our kitchen. But first we will show the experience, and then we can take on the pies.

Tell the children that yeast is made up of tiny living organisms called microbes (meaning that microbes can be good as well as bad). When they feed, they release carbon dioxide, which, mixed with flour, sugar and water, “raises” the dough, making it lush and tasty.

Dry yeast is like little lifeless balls. But this is only until the millions of tiny microbes that dormant in a cold and dry form come to life.

Let's revive them. Pour two tablespoons of warm water into a pitcher, add two teaspoons of yeast to it, then one teaspoon of sugar and stir.

Pour the yeast mixture into the bottle, pulling a balloon over its neck. Place the bottle in a bowl of warm water.

Ask the guys what will happen?

That's right, when the yeast comes to life and starts eating sugar, the mixture will fill with bubbles of carbon dioxide already familiar to children, which they begin to release. The bubbles burst and the gas inflates the balloon.

Is the coat warm?

This experience should be very popular with children.

Buy two cups of paper-wrapped ice cream. Unfold one of them and put on a saucer. And wrap the second one right in the wrapper in a clean towel and wrap it well with a fur coat.

After 30 minutes, unwrap the wrapped ice cream and place it unwrapped on a saucer. Expand and the second ice cream. Compare both portions. Surprised? What about your children?

It turns out that ice cream under a fur coat, in contrast to what is on a silver platter, almost did not melt. So what? Maybe a fur coat is not a fur coat at all, but a refrigerator? Why, then, do we wear it in winter, if it does not warm, but cools?

Everything is explained simply. The fur coat stopped letting the room heat in to the ice cream. And from this, the ice cream in a fur coat became cold, so the ice cream did not melt.

Now the question is also natural: “Why does a person put on a fur coat in the cold?”
Answer: To keep warm.

When a person puts on a fur coat at home, he is warm, but the fur coat does not let heat out into the street, so the person does not freeze.

Ask the child if he knows that there are “fur coats” made of glass?

This is a thermos. It has double walls, and between them - emptiness. Heat does not pass through the void. Therefore, when we pour hot tea into a thermos, it stays hot for a long time. And if you pour cold water into it, what will happen to it? The child can now answer this question himself.

If he still finds it difficult to answer, let him do one more experiment: pour cold water into a thermos and check it in 30 minutes.

Thrust funnel

Can a funnel "refuse" to let water into a bottle? Let's check!

We will need:

2 funnels
- two identical clean dry plastic bottles of 1 liter
- plasticine
- jug of water

Training:

1. Insert a funnel into each bottle.

2. Coat the neck of one of the bottles around the funnel with plasticine so that there is no gap left.

Let's start the science magic!

1. Announce to the audience: "I have a magic funnel that keeps water out of the bottle."

2. Take a bottle without plasticine and pour some water into it through a funnel. Explain to the audience, “This is how most funnels behave.”

3. Put a bottle of plasticine on the table.

4. Fill the funnel with water up to the top. See what will happen.

Result:

A little water will flow from the funnel into the bottle, and then it will stop flowing altogether.

Explanation:

Water flows freely into the first bottle. Water flowing through the funnel into the bottle replaces the air in it, which escapes through the gaps between the neck and the funnel. In a bottle sealed with plasticine, there is also air, which has its own pressure. The water in the funnel also has pressure, which is due to the force of gravity pulling the water down. However, the force of air pressure in the bottle exceeds the force of gravity acting on the water. Therefore, water cannot enter the bottle.

If there is at least a small hole in the bottle or plasticine, air can escape through it. Because of this, its pressure inside the bottle will drop, and water will be able to flow into it.

dancing flakes

Some cereals are capable of making a lot of noise. Now we will find out if it is possible to teach rice flakes to jump and dance.

We will need:

Paper towel
- 1 teaspoon (5 ml) crispy rice flakes
- balloon
- wool sweater

Training:

1. Spread a paper towel on the table.

2. Sprinkle cereal on a towel.

Let's start the science magic!

1. Address the audience like this: “All of you, of course, know how rice cereal can crack, crunch and rustle. And now I'll show you how they can jump and dance."

2. Inflate the balloon and tie it up.

3. Rub the ball on the wool sweater.

4. Bring the ball to the cereal and see what happens.

Result:

The flakes will bounce and be attracted to the ball.

Explanation:

Static electricity helps you in this experiment. Electricity is called static when there is no current, that is, the movement of charge. It is formed by the friction of objects, in this case a ball and a sweater. All objects are made up of atoms, and each atom contains an equal number of protons and electrons. Protons have a positive charge, while electrons have a negative charge. When these charges are equal, the object is called neutral or uncharged. But there are objects, such as hair or wool, that lose their electrons very easily. If you rub the ball on a woolen thing, some of the electrons will pass from the wool to the ball, and it will acquire a negative static charge.

When you bring a negatively charged ball closer to the flakes, the electrons in them begin to repel from it and move to the opposite side. Thus, the top side of the flakes facing the ball becomes positively charged, and the ball attracts them to itself.

If you wait longer, the electrons will begin to move from the ball to the flakes. Gradually, the ball will become neutral again, and will no longer attract flakes. They will fall back onto the table.

Guys, we put our soul into the site. Thanks for that
for discovering this beauty. Thanks for the inspiration and goosebumps.
Join us at Facebook and In contact with

We have a lot of things in our kitchen with which you can make interesting experiments for children. Well, for myself, to be honest, to make a couple of discoveries from the category of “how I didn’t notice this before.”

website chose 9 experiments that will delight children and raise many new questions in them.

1. Lava lamp

Need: Salt, water, a glass of vegetable oil, a few food colors, a large transparent glass or glass jar.

An experience: Fill a glass 2/3 with water, pour vegetable oil into the water. The oil will float on the surface. Add food coloring to water and oil. Then slowly add 1 teaspoon of salt.

Explanation: Oil is lighter than water, so it floats on the surface, but salt is heavier than oil, so when you add salt to a glass, the oil and salt begin to sink to the bottom. As the salt breaks down, it releases oil particles and they rise to the surface. Food coloring will help make the experience more visual and spectacular.

2. Personal rainbow

Need: A container filled with water (bath, basin), flashlight, mirror, sheet of white paper.

An experience: Pour water into the container and put a mirror on the bottom. We direct the light of a flashlight to the mirror. The reflected light must be caught on paper, on which a rainbow should appear.

Explanation: The beam of light consists of several colors; when it passes through the water, it decomposes into its component parts - in the form of a rainbow.

3. Volcano

Need: Tray, sand, plastic bottle, food coloring, soda, vinegar.

An experience: A small volcano should be molded around a small plastic bottle made of clay or sand - for entourage. To cause an eruption, you should pour two tablespoons of soda into the bottle, pour in a quarter cup of warm water, add a little food coloring, and finally pour in a quarter cup of vinegar.

Explanation: When baking soda and vinegar come into contact, a violent reaction begins with the release of water, salt and carbon dioxide. Gas bubbles and push the contents out.

4. Grow crystals

Need: Salt, water, wire.

An experience: To get crystals, you need to prepare a supersaturated salt solution - one in which when a new portion is added, the salt does not dissolve. In this case, you need to keep the solution warm. To make the process go better, it is desirable that the water be distilled. When the solution is ready, it must be poured into a new container to get rid of the debris that is always in the salt. Further, a wire with a small loop at the end can be lowered into the solution. Put the jar in a warm place so that the liquid cools more slowly. After a few days, beautiful salt crystals will grow on the wire. If you get the hang of it, you can grow fairly large crystals or patterned crafts on twisted wire.

Explanation: As the water cools, the solubility of the salt decreases, and it begins to precipitate and settle on the walls of the vessel and on your wire.

5. Dancing coin

Need: A bottle, a coin that can be used to cover the neck of a bottle, water.

An experience: An empty unclosed bottle should be put in the freezer for a few minutes. Moisten a coin with water and cover the bottle taken out of the freezer with it. After a few seconds, the coin will begin to bounce and, hitting the neck of the bottle, make sounds similar to clicks.

Explanation: The coin is lifted by air, which has compressed in the freezer and occupied a smaller volume, and now has heated up and began to expand.

6. Colored milk

Need: Whole milk, food coloring, liquid detergent, cotton buds, plate.

An experience: Pour milk into a plate, add a few drops of dyes. Then you need to take a cotton swab, dip it in detergent and touch the wand to the very center of the plate with milk. The milk will move and the colors will mix.

Explanation: Detergent reacts with fat molecules in milk and sets them in motion. That is why skimmed milk is not suitable for the experiment.

7. Fireproof bill

Need: Ten-rouble note, tongs, matches or lighter, salt, 50% alcohol solution (1/2 part alcohol to 1/2 part water).

An experience: Add a pinch of salt to the alcohol solution, immerse the bill in the solution so that it is completely saturated. Remove the bill from the solution with tongs and allow excess liquid to drain. Set fire to a bill and watch it burn without burning.

Explanation: As a result of the combustion of ethyl alcohol, water, carbon dioxide and heat (energy) are formed. When you set fire to a bill, alcohol burns. The temperature at which it burns is not enough to evaporate the water that the paper bill is soaked in. As a result, all the alcohol burns out, the flame goes out, and the slightly damp ten remains intact.

9 Camera Obscura

You will need:

A camera that supports slow shutter speeds (up to 30 s);

Large sheet of thick cardboard;

Masking tape (for pasting cardboard);

A room with a view of anything;

Sunny day.

1. We seal the window with cardboard so that the light does not come from the street.

2. In the center we make an even hole (for a room 3 meters deep, the hole should be about 7-8 mm).

3. When the eyes get used to the darkness, an inverted street will be found on the walls of the room! The most visible effect will be on a bright sunny day.

4. Now the result can be shot on a camera at a slow shutter speed. A shutter speed of 10-30 seconds is fine.

You will need: high-fat whole milk, food coloring in different colors, any liquid detergent, cotton swabs, a plate.

Milk should be whole, not skimmed. Pour milk into a bowl. Add a few drops of each dye to it. Try to do this carefully so as not to move the plate itself.

Then take a cotton swab, dip it in the detergent and touch it to the milk in the very center of the plate. You will like the result - colored stripes will begin to move on the surface of the milk!

The fact is that milk consists of molecules of different types: fats, proteins, carbohydrates, vitamins and minerals. When a detergent is added to milk, several processes occur simultaneously. First, the detergent reduces surface tension, and due to this, food colors begin to move freely over the entire surface of the milk. But most importantly, the detergent reacts with the fat molecules in milk and sets them in motion. Something like this:

Growing crystals

The easiest and safest way to get familiar with the crystallization process is to grow your own crystal from sodium chloride, that is, ordinary table salt.

It's very simple: take hot water, table salt and prepare a supersaturated solution. When the salt ceases to dissolve, lower the thread or wire into the container. After a few days, salt crystals will begin to form on the "seed".

Why? When a supersaturated salt solution is cooled, water evaporates. Accordingly, the salt (crystallizing substance) is first adsorbed on the surface of the "seed", then on the surface of the already formed crystal, and then embedded in its crystal lattice.

Making a Volcano

A reaction known to us under the culinary name "quench the soda" or under the chemical name "neutralization". If soda is poured into a saucer or plate (one or two tablespoons) and vinegar is carefully poured into it, you will see a real “volcanic eruption”. But, be careful not to bend over and keep the child away from the container in which the reaction takes place.

What happens: Sodium bicarbonate (soda) reacts with acids (vinegar) to form salt and carbonic acid, which, in turn, immediately breaks down into carbon dioxide and water, which, in fact, causes an “eruption” (bubbles and hiss).

rubber chicken bones

Everything is very simple here! We take clean chicken bones (thin, we are not going to spend too much time on the experiment), soak them in vinegar. After a while, the bones will become soft, like rubber.

The fact is that vinegar reacts with calcium contained in the bones. And, as you know, it is calcium that makes bones strong, hard, just the way we need them! A great experiment for those who abuse coffee or do not like dairy products, isn't it?

These simple experiments will allow the whole family not to get bored at home in bad weather, and will help to captivate the child with the wonderful science of chemistry.

And you can also introduce children to science

Have questions?

Report a typo

Text to be sent to our editors: