Кодирование генов. Кодирование и реализация биологической информации в клетке. Генетический код. Кодовая система ДНК и белка. Использование знаний в медицине и генетике

Никитин А.В.

Проблемы понимания системы кодирования ДНК


Да, надо признать, что я оказался неправ. Волнует биологов кодирование информации ДНК. Даже очень. И технократический подход к этой проблеме есть. Может быть не совсем такой, как хотелось мне, но … есть заинтересованность в нахождении истины. И это главное.

Петр Петрович Гаряев прислал мне свою последнюю монографию для изучения и понимания, за что ему отдельная благодарность.

Но, вместе с новой информацией возникли и новые вопросы. О некоторых из них я и попробую рассказать в этой статье.

Два пишем, один - в уме…

Нечеткое следование триплетам при трансляции белка мы уже отмечали . Тот же вопрос исследует и П.П.Гаряев. Вот фиксируется видимое противоречие:

«Точность кодирования последовательностей аминокислот белков в этой модели странным образом уживается с двойной вырожденностью предлагаемого “кода” по линиям избытка транспортных РНК (тРНК) по сравнению с числом аминокислот и неоднозначного соответствия кодон-антикодон, когда только двум (а не трем) нуклеотидам триплетов иРНК необходимо точное спаривание c антикодоновой парой нуклеотидов тРНК, а по третьему нуклеотиду природой допускается неверное спаривание, так называемое “воблирование” (от англ. слова “wobble”- качание) по гипотезе Ф.Крика . Это означает, что некоторые антикодоны могут “узнавать” более одного кодона в зависимости от того, какое основание находится в 1-м положении антикодона, соответствующем 3-му положению нуклеотида с учетом их антипараллельного комплементарного взаимодействия. “Узнавание” такого рода “неправильное”, если следовать парадигме генетического кода, поскольку возникают неканонические пары оснований “Аденин-Гуанин”, “Урацил-Цитозин” и другие с энергетически невыгодными водородными связями. “Код”, особенно митохондриальный, становится настолько вырожденным, и логически следующий отсюда произвол включения аминокислот в пептидную цепь столь велик, что как бы исчезает само понятие генетического кодирования».


Вопрос поставлен:

«Точность белкового синтеза эволюционно консервативна и высока, но может ли она достигаться такого рода “тайнописью”, когда “знак” (кодон) и “обозначаемое” (аминокислота) не всегда изоморфны, не однозначны? Если придерживаться старой догмы генетического кода, логично думать, что две разные аминокислоты, шифруемые двумя одинаковыми (третий не важен) нуклеотидами кодонов иРНК, будут с равной вероятностью включаться в пептидную цепь, т.е. случайно. И таких парных неоднозначностей даже в немитохондриальном коде насчитывается шесть, если не считать еще две по стоповым кодонам (они же “нонсенс” или бессмысленные). Так что же, существует “индульгенция разрешения” частых и случайных замен аминокислот при синтезе белков? Однако, известно, что такие случайные замены в большинстве случаев имеют самые отрицательные последствия для организма (серповидная анемия, талассемии и т.д.). Налицо явное противоречие: нужна точность (однозначность) отношений “знак-обозначаемое” (кодон-аминокислота), а придуманный людьми код ее не обеспечивает».

Объяснения сути противоречий и предложенного варианта решения:

«Видно, что пары разных аминокислот шифруются одинаковыми значимыми дублетами кодоновых нуклеотидов (“воблирующие” мало значимые, по Крику , и вообще нечитаемые, по Лагерквисту , нуклеотиды смещены в индекс). В терминах лингвистики это явление носит название омонимия, когда одни и те же слова имеют разный смысл (например, русские слова “лук”, “коса” или английские “box”, “ring” и т.п.). С другой стороны, избыточные различающиеся кодоны, обозначающие одни и те же аминокислоты, уже давно рассматривают как синонимичные».

«…Для большей иллюстративности мы приводим таблицу генетического кода, представленную Лагерквистом и перегруппированную им по кодоновым семействам с ориентировкой на первые два рабочих нуклеотида:

Из Табл.1. видно, что одна и та же аминокислота может кодироваться четверками кодоновых семейств. Например, четверка CU-семейства кодирует лейцин. Четверка GU-семейства кодирует валин, UC – серин, CC – пролин, AC – триптофан, GC – аланин, CG –аргинин, GG – глицин. Это лежащий на поверхности, и сразу замеченный, факт вырожденности, т.е. информационной избыточности кода. Если взять взаймы понятия и термины лингвистики для белкового кода, что давно, повсеместно и с легкостью принято, то вырожденность кода можно понимать как синонимию. Это также единогласно принято. Иначе говоря, один и тот же объект, например, аминокислота, имеет несколько шифров - кодонов. Синонимия не таит в себе никаких опасностей для точности биосинтеза белков. Наоборот, такая избыточность хороша, поскольку повышает надежность работы трансляционной рибосомной «машины»».

Я внес небольшое цветовое разнообразие в таблицу, чтобы было видно то, о чем мы говорим. Синонимические четверки выделены желтым цветом. Всего таких четверок – 8. Омонимические четверки пришлось разделить на три категории, по степени разнообразия. Далее:

«… Однако на Табл.1 видно и другое, фундаментальное, генолингвистическое явление, как бы не замечаемое или игнорируемое. Это явление обнаруживается в том, что в некоторых кодоновых семействах четверки кодонов, точнее, их значащие одинаковые двойки нуклеотидов шифруют не одну, а две различные аминокислоты, а также стоп-кодоны. Так, дублетное UU-семейство кодирует фенилаланин и лейцин, AU – изолейцин и метионин, UA – тирозин, Och и Amb стоп-кодоны, CA – гистидин и глицин, AA – аспарагин и лизин, GA – аспарагиновую и глутаминовую, UG – цистеин, триптофан и Umb стоп-кодон, AG – серин и аргинин. Продолжая лингвистические аналогии, назовем это явление ОМОНИМИЕЙ первых двух кодирующих нуклеотидов в некоторых кодоновых семействах.

В отличие от синонимии, омонимия потенциально опасна, что и отметил Лагерквист, хотя и не ввел термин-понятие «омонимии» в применении к белковому коду. Такая ситуация, вроде бы, действительно должна вести к неоднозначности кодирования аминокислот и стоп-сигналов: один и тот же кодоновый дублет, в пределах некоторых выделенных Лагерквистом семейств, кодирует две разных аминокислоты или является «разностоповым».

Принципиально важно понять: если синонимия кода - это благо (избыток информации), то омонимия - потенциальное зло (неопределенность, неоднозначность информации). Но это мнимое зло, поскольку белок синтезирующий аппарат легко обходит эту трудность, о чем речь пойдет ниже. Если же автоматически следовать таблице (модели) генетического кода, тогда зло становится не мнимым, но реальным. И тогда очевидно, что омонимический вектор кода ведет к ошибкам в синтезе белков, поскольку рибосомный белоксинтезирующий аппарат, каждый раз встречаясь с тем или иным омонимичным дублетом и руководствуясь правилом чтения «два из трех», должен выбрать одну и только одну аминокислоту из двух различных, но кодируемых неоднозначно тождественными дублетами-омонимами.

Следовательно, связки 3’- нуклеотиды в кодонах и спаривающиеся с ними 5’- нуклеотиды в антикодонах, не имеют гено-знакового характера и играют роль «стерических костылей», заполняющих «пустые места» в кодон-антикодоновых парах. Короче говоря, 5’- нуклеотидs в антикодонах случайны, «воблируют» - от английского ‘wobble’ (качание, колебание, виляние). Вот суть Вобл-гипотезы».

Суть изложена вполне четко. Перевод не требуется. Проблема понятна.

Cтоп-кодоны и старт-кодон, они в таблице выделены жирным шрифтом, тоже работают не всегда однозначно, а в зависимости от чего-то…, как полагают биологи, от контекста.

«Продолжим анализ основополагающей работы Крика и Ниренберга, постулирующей понятие генетического кода.

С.142 -143: “ ... до сих пор все опытные данные хорошо согласовывались с общим предположением о том, что информация считывается тройками оснований, начиная с одного конца гена. Однако, мы получили бы те же результаты, если бы информация считывалась группами в четыре или даже более оснований” или “...группами, содержащими кратное трем число оснований”. Это положение почти забыто или не понято, но именно здесь видно сомнение, обязательно ли код триплетный. И не менее важно, что предугадано будущее понимание текстов ДНК и РНК как смысловых фрактальных образований, родственных естественным языкам, что продемонстрировано в наших исследованиях ».

При 4 разных основаниях системы кодов ДНК группы считывания могут быть только по 3 или по 4 основания. 4 основания при парном чтении дают только 16 возможных комбинаций. Не хватает. А вот сколько: 3 или 4 основания в группе считывания, математически установить невозможно. Потому, что так или иначе использованы будут все возможные комбинации. Или 64 при триплете, или 256 при тетраплете.

При увеличении зоны считывания кода «группами, содержащими кратное трем число оснований» количество возможных комбинаций кода будет нарастать неограниченно. Только что это нам дает? Если ориентироваться на кодирование аминокислот, то… ничего. А с дублетным подходом биологов это и вообще никак не совмещается.

Но, главное, в этой цитате впервые, хоть и неявно появилась «зона считывания» информации, не соответствующая триплету. Триплет – одно, а зона считывания – другое. И одно может не совпадать с другим. Очень важное замечание.

По сути дела, теория «качания» предлагает считать зоной считывания кодона только первые два основания. Т.е. в данном случае предлагается признать, что зона считывания меньше зоны кодирования.

Теперь рассмотрим и обратный подход:

«Некоторые мРНК содержат сигналы на изменение рамки считывания. Некоторые мРНК содержат в транслируемой области терминирующие кодоны, но эти кодоны успешно обходятся за счет изменения рамки считывания перед ними или непосредственно на них. Рамка может сдвигаться на -1, +1 и + 2. Существуют специальные сигналы в мРНК, изменяющие рамку считывания. Так, сдвиг рамки трансляции на -1 на РНК ретровируса происходит на специфической гептануклеотидной последовательности перед шпилечной структурой в мРНК (рис. 5, в). Для сдвига рамки на +1 на мРНК бактериального фактора терминацинации RF-2 важны нуклеотидная последовательность на месте сдвига (кодон UGA), последующий кодон, а также предшествующая им последовательность, комплементарная к 3"-концевой последовательности рибосомной РНК (аналог последовательности Шайна-Дальгарно) (рис. 5, г)». .

Цитата уже приводилась ранее , но теперь посмотрим на её содержание более внимательно. Что понимается под термином – рамка считывания? Это понятие из седой старины вычислительной техники, когда зона считывания информации с перфоленты или перфокарты ограничивалась непрозрачной рамкой, чтобы уменьшить опасность ошибки при считывании информации световым потоком на фотоприемник через отверстия в карте или ленте, выбитые в нужных местах строки разметки. Принцип считывания давно ушел, а термин остался. Так как понятие рамки считывания понятно всем биологам, то видимо оно означает зону считывания только одного основания из триплета. И под «сдвигом рамки считывания» надо понимать, что при +1, читается основание, следующее за последним элементом триплета, а -1, что считывается основание перед первым элементом все того же триплета. Какая пара оснований при этом остается основой в считываемом триплете? Это не уточняется…

Но, похоже, не все понимают рамку считывания, как в данном случае. Если под понятием рамки считывания понимать рамку, ограничивающую 3 основания, то при сдвиге +2 от читаемого триплета остается 1 элемент, а два – из соседнего.

Так о какой рамке считывания все же идет речь? Ну, да, ладно, пусть пока остается неясность…

Но в любом случае, потом эти основания, уже считанные рамкой снова будут читаться, когда рамка вернется на место и рибосома перейдет к чтению следующего триплета…, а как же неперекрываемость кода?

В данном случае, механистический подход биологов к оценке изменения позиций считывания триплета не учитывает реальный размер того, о чем они говорят. Терминология явно вводит в заблуждение. Как они сами в этом потом разбираются – непонятно. Очевидно, что никакая «рамка» никуда не двигается…

Двигается выборка нужных позиций в зоне считывания. И если сложить максимальные приведенные в выше сдвиги «рамки» считывания с длиной читаемого кодона, то получим: 2+3+2 = 7. Таким образом, общая ширина зоны считывания рибосомы составляет уже 7 оснований. Рибосома выбирает триплет из 7 возможных оснований. Как? Это уже другой вопрос…

Но нам важнее другое. Теперь можно реально оценить, что зона считывания информации с РНК может быть больше триплета и составлять 7 и более оснований, при этом, как необходимые позиции считывания, фиксируются только три основания. А что такое, остальные позиции? Возможно, тот самый «контекст», который и меняет варианты считывания триплета. Омонемические, по терминологии П.П.Гаряева.

Конечно, это только один из множества частных случаев понимания многостороннего понятия контекста. Но …, по крайней мере, он позволяет понять кое-что, не прибегая к высшим философским обобщениям. На вполне реальном уровне механистического понимания.

Об алфавите клеточных текстов.

Вопрос, конечно, интересный…

О понимании оснований ДНК, как букв какого-то клеточного алфавита принято биологами на вооружение давно. Отсюда и возникновение понятия смыслового контекста в оценке триплетного кодирования, и поиск осмысленного подхода клетки к этому кодированию, и постепенный переход к Высшему Разуму, написавшему эту книгу Жизни…

Только вот, с точным указанием букв этого алфавита все время возникают разногласия. Что принимать за буквы? Основания (А,Т,С,G), кодоны, составленные из них, или аминокислоты в составе получаемого при трансляции белка?

Оснований – 4, аминокислот – 20, кодонов – 64, что взять за основу?

О необходимости лингвистической оценки последовательностей ДНК, РНК и белковых молекул говорят все, независимо от понимания букв клеточного алфавита. Подходить к информации ДНК, как к смысловому тексту с пониманием контекста применимого для литературной оценки, так требуют понимать биологи. Таким образом, предполагается, что исследуемый язык обладает всеми атрибутами развитого литературного языка и нужен соответствующий подход к оценке его многосмысловой информативности.

Прекрасно. И все же, буквы – где? Чем написан этот литературный текст, требующий такого пристального внимания лингвистов? Пока в рамках того же механистического подхода…

Основания или нуклеотиды? Похоже – нет. С этим соглашается основная масса биологов. Маловато 4-х оснований для создания литературного текста. Да еще при наличии непрерывности последовательности на всем протяжении ДНК.

С кодоном, как буквой этого алфавита трудности возникают сразу. Где он, этот кодон, на ДНК и РНК, как его найти? Это может сделать только рибосома, и то, только при непосредственном контакте. Да и что это за составные буквы такие, из триплетов? Сложно понять. Тем не менее, у этого понимания кодонов, как букв клеточного алфавита, сторонников достаточно.

Принять за буквы алфавита аминокислоты? Да, с этим согласно большинство. Но, тогда Книгой Жизни становится белок, а не ДНК. В белке смысловой контекст есть, а в ДНК, получается, может и не быть? Или будет, но другой, отличный от белкового…

И потому, требование оценки и ДНК, и белка с позиций смыслового контекста есть, а уточнения, что и как все же надо оценивать – нет.

П.П.Гаряев в этой ситуации предложил, в том числе и лингвистически, оценивать не ДНК и белок, а их голографические объемные «портреты». Очень сильная позиция, надо признать. И очень продуктивная…

Но вот с алфавитом клетки при механистическом, привычном уже подходе, тогда совсем непонятно. Есть он, или его нет совсем, и это понятие только аллегория?

Биологи уточнений не дают. Но упорно продолжают применять это понятие. Каждый - в своем понимании…

Об исходной системе кодирования.

Именно об исходной, которая была, возможно, на этапе разделения клеток на прокариоты и эукариоты. Сейчас она скрыта многочисленными наложениями и отклонениями и у тех, и у других. Миллионы лет эволюции бесследно не прошли.

И все же…

Не всегда ДНК была хранилищем информации, раньше эту роль могла исполнять РНК. Она вполне заменяла и белок на каком-то этапе. Об этом говорят многочисленные исследования. И оснований ДНК и РНК не всегда было 4, но мы сейчас не об этом…

Но на каком-то этапе развития появилась система кодирования информации, тогда вполне удовлетворяющая всем требованиям информационной и логической структуры управления процессами клетки.

Та самая классика, на которую все указывают, и тут же начинают опровергать…

Информационный массив – ДНК, РНК. Последовательность, состоящая из комбинации 4 нуклеотидов: A,T(U),C,G.

Шаг считывания информации – 1 нуклеотид.

Метод считывания информации – последовательный.

Объем разового считывания – триплет.

Ни одна логическая система считать не умеет. Но, вот считать до одного она в состоянии. Это дальше уже - много. И различать разные единицы в двух соседних парах – тоже. И если ось симметрии вещественная, то определять логические состояния соседних позиций относительно такой оси, она вполне в состоянии. Но, вот дальше увеличивать зону чтения без счета на том этапе видимо было очень трудно.

И потому, на том этапе – триплет, это максимально возможная форма единицы информации системы. Разряд на оси симметрии, разряд справа и разряд – слева.

Три разных единицы учета… даже для шагового чтения… это много.

В системе кодирования информации ДНК и РНК применено 4 возможных логических состояния, триплетное считывание. Сложность для клетки – предельная.

Как доказать триплетность кода? Это я уже показывал и не раз. Напишем еще раз: Оснований – 4, аминокислот – 20, кодонов или триплетов – 64.

Математика простая: 64/3 = 21

Такое количество неперекрываемых триплетов возможно получить при шаге фиксации через одно основание. Это 20 триплетов для аминокислот и один СТОП-кодон.

С другой стороны: 4 3 = 64, это те же 21х3=63, это 60 комбинаций триплетов, 3 стоп кодона и старт-кодон, замыкает вариационное множество. Это просто математика, но... она показывает, что первоначально, действительно считывались три подряд основания - кодон при шаге в 1 основание. Это и обусловило применяемое количество аминокислот - 20. Таким образом, все же - триплет.

В этом случае понятна вырожденность кода аминокислоты в триплете. Она возникла от перекрываемости кода.

Мы неверно понимаем появление вырожденности кодонов. Это не расширение возможностей системы в кодировании информации, а «ошибки её прошлого». Это отголосок исходной системы кодирования…

Информация на тему:

«С.153: “ ... одна аминокислота шифруется несколькими кодонами. Такой код называется вырожденным... такого рода вырождение не говорит о какой-то неопределенности в построении молекулы белка... оно лишь обозначает, что определенная аминокислота может быть направлена в соответствующее место цепи молекулы белка с помощью нескольких кодовых слов”.

Конечно, для кодирования любой аминокислоты в основаниях ДНК достаточно одного кодового триплета. Тем более, при неперекрываемом кодировании. Повторяй один кодон сколько угодно раз, и получай столько молекул нужной аминокислоты в белке. Легко, просто, понятно, и энергозатраты минимальны.

Вырожденность кода триплета – вынужденная мера, впрямую связанная с первоначальным способом считывания кода. Так уж получилось в ходе эволюции.

Механизм появления вырожденности кода выглядит вот так:

При шаге считывания триплетов в 1 основание за каждый шаг меняется только один знак триплета, а два знака триплета остаются постоянными. Только синхронно сдвигается их позиции. При двух шагах неизменной остается информация только одного знака триплета, но она проходит последовательно по всем позициям отображения.

Зачем нам это?

При 3 кодирующих знаках на каждом шаге повторяются 2 знака. И лишь один изменяется. На следующем шаге изменится и второй знак. И один знак останется неизменным на пройденном пути. Полная смена знаков наступит только после третьего шага. Только теперь новая комбинация триплета не будет иметь влияния от предыдущих сочетаний.

При триплетном шаге каждый новый триплет в формировании не зависит от предыдущего, но… такой шаг для такой считывающей системы тогда был невозможен.

И формируемые триплеты ДНК оказывались при чтении зависимыми друг от друга.

Такое плавное перетекание одного триплета в другой приводит к ограничению возможности быстрого использования всех перестановок в триплете. Для возможного использования всех 64 вариантов триплета необходимо 64*3 = 192 единичных шага считывания триплетов ДНК. И наоборот, из 64 шагов считывания возможных комбинаций при последовательном шаговом чтении всех кодонов, от первой до 64-ой, будет 42 повтора, а уникальных будет не более 1/3 = 21 комбинация. И еще 1/3….

Вот и ответ, почему аминокислот только 20. Можно было бы и больше, да система кодирования и считывания информации не позволяет.

Вот и стала клетка использовать дополнительные коды из имеющихся 42 повторов. Иначе она и не могла, потому, что пробелы в трансляции недопустимы. Есть код - любой, и рибосома должна выполнить операцию трансляции. Переходные варианты от одного независимого кода триплета к другому стали быстро заниматься теми же 20-ю аминокислотами, но уже в зависимости от частоты применения. Для одной -6 кодов, а другой и одного хватает. Мы это и регистрируем, как вырожденность кода.

Понятно, что при использовании зависимых кодонов должна была расширяться и база транспортных тРНК. Так и произошло. При полномасштабной системе количество кодонов иРНК должно соответствовать количеству антикодонов на тРНК. Так что, большое количество тРНК говорит только о том, что система изначально формировалась именно таким способом.

Как мы видим, первоначальная или исходная система кодирования на этапе появления 4 нуклеотидов в ДНК хорошо просматривается. Далее уже пошли наслоения поздних эволюционных процессов. И сегодня мы имеем…то, что имеем.

Начальные основные коды аминокислот.

С другой стороны, если следовать по этому пути, то из 64 возможных можно выбрать какие-то 21 комбинаций и применить, как основные. Но, какие?

Как клетка могла выбирать? Самый простой ответ – по максимальной симметрии триплета.

Применим принцип симметричности в поиске нужных сочетаний и проверим, насколько мы правильно поняли путь природного кодирования аминокислот в ДНК. Для этого соберем все варианты симметричных кодов в таблицу 2. Отличный результат…, 15 из 16 возможных аминокислот получили симметричные коды.

Но, осталось еще 5 аминокислот и СТОП.

Видимо Природа шла тем же путем, … и споткнулась на том же месте. Все симметричные варианты использованы, запаса для расширения системы нет, а кодов не хватает. Какой следующий вариант применила она для продолжения поиска кодов?

Теперь повторы и один добавочный элемент…

Есть. CAA, AAC, UGG, и вот он основной Стоп-кодон – UAA.

Осталось найти еще два кодона…

GAC и AUG. Последний и стал Старт-кодоном…

И общее количество основных сочетаний используемых в ДНК и РНК стало – 21. Таблица 2 отражает путь поиска основных кодовых обозначений.

Но и тут эволюционная логика развития показывает интересный пример. До конца и сразу использованы только полные симметрии. Остальные варианты использованы не сразу и не полностью. Например, для аминокислоты Gly использован основной кодон GGG, а потом добавлен GGU, из неиспользованного резерва…

Созданные резервы кодирования работали до последнего. Сегодня все резервы давно использованы и пришло время совмещения функций, где это возможно. Например, для Старт-кодона. Начался поиск новых путей в расширении возможностей триплетного кодирования. аминокислот в РНК. Вот примерно так, возможно, шел отбор основных кодов. По симметрии и простейшим перестановкам…

Таблица 2

Логика действий понятна. Возможно, мы ошиблись в последовательности действий, но это пока не так важно. Конечно, это только мои вариации на тему, профессионалам, наверное, виднее, так или не так всё было в действительности, но все же, … получилось интересно.

Не сходятся концы с концами…

Странно, … симметричные коды можно использовать только при триплетном считывании, без перекрытия. Этот момент заставляет еще раз присмотреться к приведенной выше математике получения 20 аминокислот для использования в триплетном кодировании. Явно, одно не соответствует другому.

Математика показывает объективную реальность поэлементного движения рибосомы по РНК. Но и такое широкое использование симметрий в кодировании аминокислот так же не может быть случайным, и указывает на триплеты независимого считывания.

Возможно, что поэлементное считывание информации РНК существовало до триплетного кодирования и какое-то время вместе с появлением триплетов. Оно и определило количество применяемых аминокислот.

Но на каком-то этапе произошел скачок в развитии. Система кодирования была полностью пересмотрена. Триплетное независимое считывание заставило заново провести кодирование используемых аминокислот по признакам симметрии. Но эволюция не умеет отбрасывать старые варианты…

Дополнительные коды уже есть, пришлось их перераспределить по аминокислотам в зависимости от частоты их применения.

И сложилась парадоксальная картина. Считывание, вроде бы, неперекрываемое, и для кодирования аминокислоты достаточно одного кодона, а использованными оказались все 64 варианта. Потенциальная избыточность кодирования перекрыта вырожденностью кодов. Расчетный запас есть, а фактически – нет. Как это получилось, мы уже увидели.

Скорее всего, фактором пересмотра системы стало быстрое развитие клеточных рибосом. В конечном итоге они определяют всю систему кодирования и её применение в клеточном организме.

Можно предположить, что зона считывания информации у рибосомы давно превысила три знака и вышла далеко за эти пределы. Появилась возможность выбора и запоминания информации нужного кодона внутри большой зоны считывания информации. Это позволило оставить рибосоме поэлементный шаг, но была реализована и возможность триплетного считывания в независимом режиме. У рибосомы где-то появилась оперативная память.

Зона считывания информации для рибосомы даже у прокариотов, как мы видим, достигла 7 нуклеотидов. И это не предел. Если принять за основу, что рибосомы имеют два центра трансляции или считывания информации , то их суммарная зона считывания информации одной рибосомой достигла уже и 14 нуклеотидов. Какие-то участки кодов принимаются за триплеты, а остальное составляет контекст…

А сейчас…

А сейчас всё совсем запуталось. По информации биологов счет идет в триплетах, правда никто не объясняет, как это происходит. Ближайший контекст не учитывается. Сопоставление кодовой последовательности РНК и получаемого по ней белка представляет собой очень трудную задачу, и четко понять, как изменилась система и что учитывается при трансляции – пока видимо невозможно.

Мало того, биологи основное внимание уделяют не систематизации, а нахождению отклонений от системы, тем самым увеличивая и без того обширное разнообразие фактов, и сами себе создают головоломную задачку-нерешайку. Неразбериху дополняет полное смешение разнообразных отклонений в механизмах считывании триплетов прокариотов и эукариотов в один большой кроссворд…, где они и сами уже, похоже, запутались.

Почему? У них задачи другие. Они работают с биологическими объектами, так, как принято в их науке. Потому и выводы по вопросам кодирования РНК нашли отражение в теории «качания», а не в системе принципов считывания информации и теории кодирования. Их можно понять, но выход надо находить…

Предложенный самими биологами технократический подход к проблеме понимания кодирования ДНК еще далеко не исчерпал свои возможности. По сути, пока он толком и не применялся. Использовалась только терминология, но не подход.

Возможно, настало время применения машинного анализа последовательностей ДНК с учетом расширенной зоны считывания информации по отношению к триплету кодирования. Тогда станет понятен механизм действия ближайшего к триплету считывания контекста кодирования, а возможно, и элементов программирования процесса трансляции белка, запоминаемых рибосомой. Особенно важен такой анализ для исследования нетранслируемых областей РНК и ДНК. Так как уже понятно, что это программные элементы системы кодирования. От них зависят все процессы, в том числе и трансляция белка. Название «мусор» к ним явно никак не походит…

Да и не может быть «мусора» в массивах стратегически важной информации, хранящихся в ДНК. Этого никакая информационная система себе позволить не может.

Сегодняшний уровень развития вычислительной техники вполне позволяет решать эти задачи. Построить систему информационного управления в клеточной структуре, уточнить каналы связей, установить ключевые элементы управления и систему сигналов. Тогда будет понятен хоть примерный уровень технической сложности этой системы управления. Пока понятно только одно, что ключевую роль в ней исполняет рибосома, но насколько технически сложен это универсальный клеточный автомат? Как на её фоне выглядит техническая сложность остальных исполнительных механизмов клетки?

Ответов я пока не нашел…

Литература:

  1. Гаряев П.П. Тертышный Г.Г. Леонова Е.А. Мологин А.В. Волновые биокомпьютерные функции ДНК. http://nature.web.ru/db/msg.html?mid=1157645&s
  2. Никитин А.В., Считывание и обработка информации ДНК // «Академия Тринитаризма», М., Эл № 77-6567, публ.16147, 08.11.2010

Никитин А.В., Проблемы понимания системы кодирования ДНК // «Академия Тринитаризма», М., Эл № 77-6567, публ.16181, 27.11.2010


Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код - это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки - природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

ДНК и РНК

Дезоксирибонуклеиновая кислота - это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности - "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований - это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан - 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Русские ученые выяснили, что ДНК скрывают закодированную информацию, присутствие которой заставляет считать человека биологическим компьютером, который состоит из сложных программ.

Загадочный текст в молекулах ДНК пытаются расшифровать специалисты из Института квантовой генетики. И их открытия все больше убеждают, что сначала было Слово, а мы есть порождение вакуумного Супермозга. Об этом рассказал президент ИКГ Петр Петрович Гаряев .

Совсем недавно ученые пришли к неожиданному открытию: молекула ДНК состоит не только из генов, отвечающих за синтез определенных белков, и генов, отвечающих за форму лица, уха, цвет глаз и т.д., но большей частью - из закодированных текстов.
Причем эти тексты занимают 95-99 процентов от всего содержания хромосом! (ПРИМЕЧАНИЕ: западные учёные считают это ненужной частью...как они говорят - это мусор ). И только 1-5 процентов занято пресловутыми генами, которые синтезируют белки.

Основная часть информации, содержащаяся в хромосомах, остается нам пока неизвестной. По мнению наших ученых, ДНК - это такой же текст, как текст книги. Но он обладает способностью быть читаемым не только буква за буквой и строчка за строчкой, но и с любой буквы, потому что там нет перерыва между словами. Читая этот текст с каждой последующей буквы, получают все новые и новые тексты. Можно читать и в обратную сторону, если ряд плоский. А если цепочка текста развернута в трехмерном пространстве, как в кубике, то текст читаем во всех направлениях.

Текст нестационарен, он постоянно движется, меняется, потому что наши хромосомы дышат, колышутся, порождая огромное количество текстов. Работа с лингвистами и математиками МГУ показала, что структура человеческой речи, книжного текста и структура последовательности ДНК математически близки, то есть это действительно тексты на неизвестных пока нам языках. Клетки разговаривают между собой, как мы с вами: генетический аппарат обладает бесконечным множеством языков.

Человек есть самочитаемая текстовая структура, клетки разговаривают между собой таким же способом, как люди между собой - делает вывод Петр Петрович Гаряев. Наши хромосомы реализуют программу строительства организма из яйцеклетки через биологические поля - фотонные и акустические. Внутри яйцеклетки создается электромагнитный образ будущего организма, записывается его социопрограмма, если хотите - Судьба.


Это еще одна неизученная особенность генетического аппарата, которая реализуется, в частности, с помощью одной из разновидностей биополя - лазерных полей, способных не только излучать свет , но и звук . Таким образом, генетический аппарат проявляет свои потенции через топографическую память.
В зависимости от того, каким светом освещены голограммы - а их множество, потому что на одной голограмме можно записать множество голограмм, - получается то или иное изображение. Причем прочесть его можно только тем же цветом, которым оно написано.
А наши хромосомы излучают широкий спектр, начиная от ультрафиолетового и кончая инфракрасным, и поэтому могут читать друг у друга множественные голограммы. В результате возникает световой и акустический образ будущего нового организма, а в прогрессии - все последующие поколения.

Программа, которая записана на ДНК, не могла возникнуть в результате дарвинской эволюции: чтобы записать такое огромное количество информации, требуется время, которое во много раз превышает время существования Вселенной.

Это все равно, что методом бросания кирпичей попытаться построить здание МГУ. Генетическую информацию можно передать на расстоянии, молекула ДНК может существовать в виде поля. Простой пример переноса генетического материала - проникновение в наш организм вирусов, таких, например, как вирус Эбола.

Этот принцип «непорочного зачатья» можно использовать для создания некоего устройства, позволяющего внедряться в человеческий организм и влиять на него изнутри.
«Мы разработали , - рассказывает Петр Петрович, - лазер на молекулах ДНК. Эта вещь потенциально грозная, как скальпель: им - можно лечить, а можно убить. Без преувеличения скажу, что это основа для создания психотропного оружия . Принцип работы такой.

В основе лазера лежат простые атомные структуры, а в основе молекул ДНК - тексты. Вы вводите в участок хромосомы определенный текст, и эти молекулы ДНК переводите в состояние лазера, то есть вы на них воздействуете так, что молекулы ДНК начинают светиться и издавать звук - разговаривать!
И в этот момент свет и звук могут проникнуть в другого человека и внедрить в него чужую генетическую программу. И человек меняется, он приобретает другие характеристики, начинает по-другому думать и действовать ».

*****

Генетический код, по-видимому, был изобретен за пределами Солнечной системы уже несколько миллиардов лет назад.

Это заявление поддерживает идею панспермии - гипотезу о том, что жизнь на Землю занесена с космических просторов. Это конечно, новый и смелый подход в завоевание галактик, если мы представим себе, что это был осознанный шаг инопланетных суперсуществ, умеющих оперировать генетическим материалом.

Исследователи предполагают, что на каком-то этапе наша ДНК была закодирована с инопланетным сигналом древней внеземной цивилизации. Как считают учёные, математический код, лежащий в человеческой ДНК, не может быть объяснён только лишь эволюцией.

Галактическая подпись человечества.

Удивительно, но оказывается, как только код был установлен, он будет сохраняться в неизменном виде на протяжении космических масштабов времени. Как поясняют исследователи, наша ДНК является самым долговечным «материалом” и именно поэтому код представляет собой исключительно надежную и обладающую интеллектуальными возможностями «подпись» для тех пришельцев, кто её будет читать, говорится об этом в журнале "Icarus".

Специалисты утверждают: «Записанный код может оставаться неизменным в течение космических масштабов времени, по сути, это самая надежная конструкция. Поэтому он представляет собой исключительно прочное хранилище для интеллектуальной подписи . Геном, будучи соответствующим образом переписан на новый код с подписью, будет находиться в замороженном состоянии в клетке и ее потомстве, которое затем можно пронести через пространство и время.”

Исследователи считают, что ДНК человека устроен таким точным образом, что раскрывает «набор арифметических и идеографических структур символического языка”. Работа ученых приводит их к мысли, что мы были буквально «созданы вне Земли” несколько миллиардов лет назад.

Универсальный язык Вселенной - живые космические коды

Эти идеи и убеждения не являются принятыми в научном сообществе. Однако эти исследования доказали то, о чем некоторые исследователи говорили в течение десятилетий, что эволюция не могла произойти сама по себе, и что есть что-то внеземное для всего нашего вида.

Однако основную тайну эти исследования и заявления не раскрывают. Тайну, которая остается в том виде как она сейчас есть; если внеземные существа действительно создали человечество и жизнь на планете Земля, тогда «кто» или «что” создал эти внеземные существа?


Стало быть, мы есть ПОСЛАНИЕ?
Человечеству определили роль SMS с видом на будущее...


Источник - http://oleg-bubnov.livejournal.com/233208.html
.

В генетическом коде записан разумный сигнал

Учёные обнаружили в генетическом коде целый ряд чисто математических и идеографических языковых конструкций, которые нельзя списать на случайность. Это можно интерпретировать только как разумный сигнал.

В 2013 году были опубликованы результаты исследования, авторы которого попробовали применить методику поиска сигнала от внеземного разумного источника (проект SETI) не к бескрайним просторам Вселенной... а к генетическому коду земных организмов.

«... Мы показываем, что земной код демонстрирует высокоточную упорядоченность, которая удовлетворяет критериям информационного сигнала. Простые структуры кода обнаруживают стройное целое из арифметических и идеографических конструкций одного и того же символического языка. Точные и систематичные, эти скрытые конструкции представляются как продукты точной логики и нетривиальных вычислений, а не результат стохастических процессов (нулевая гипотеза о том, что это - результат случая вместе с предполагаемыми эволюционными механизмами, отвергается со значением < 10-13). Конструкции настолько чётки, что кодовое отображение уникально выводится из своего алгебраического представления. Сигнал демонстрирует легко распознаваемые печати искусственности, среди которых символ нуля, привилегированный десятичный синтаксис и семантические симметрии. Кроме того, экстракция сигнала включает в себя логически прямолинейные, но вместе с тем абстрактные операции, что делает эти конструкции принципиально несводимыми к естественному происхождению. ...»

Таким образом, генетический код - это не только код, используемый для записи информации, необходимой для построения и функционирования живых организмов, но еще и некая "подпись”, вероятность случайного происхождения которой - менее 10-13. Это практически безальтернативно указывает на разумный источник создания генетического кода.

Признаки организма связаня с определенными белками. Белки состоят из аминокислот. Наследственная инормация о белках хранится в ДНК, которая состоит из нуклеотидов. Возникли вопросы: 1) каким образом в ДНК закодирована наследственная информация о белках.2)каковы мех-мы реализ наследств инф в кл.3)сущ ли мех регул работы генов - экспрессия генов. В 1961 был создан ген код-принцип записи наслед инф о послед амин-т в белке через послед нуклеотидов ДНК. Св-ва ген кода: 1)триплетность-это полож одной амии-ты кодируется сочетанием 3-х нуклеотидов (сочетание 3-х нуклеотадов-триплет, кодон). Известно 64 возможных триплета и 3 из них не несет смысловой нагрузки и являются Стоп кодонами:УАА,УАГ, УГА. 2)ВЫРОЖДЕННОСТЬ-положение 1 амин-ты может кодироваться неск триплетами или кодонами. 3)ГЕН КОД НЕ ПЕРЕКРЫВАЕТСЯ В ПРЕДЕЛАХ 1 ГЕНА. т.е 1 нуклеотид не может одновременно соот 2 триплетам. 4)ГЕНЕТИЧЕСКИЙ КОД БЕЗ ЗАПЯТЫХ, т.е между триплетами нет свободных нуклеотидов. 5)ГЕНЕТИЧЕСКИЙ КОД УНИВЕРСАЛЕН, т.е одинаков у разных орг-ов.6)СТАБИЛЕН, т.е не измен в ряду поколений. При хар-ки ген кода исп понятие комплиментарность, т.е полное соотв послед амии-т в белке, послед нуклеотид ДНК. Реализация последоват инф в клетке. В эукориоти кл почти вся ДНК нах в ядре. Синтез белка происх в цитоплазме, значит должен быть посредник, кот перенесет ген инф из ядра в цитоплазму. Посредник-молекула и-РНК. Реализ наслед инф складывается из 2-х процессов 1)транскрипция- синтез мол-лы РНК на ДНК, как на матрице. 2)трансляция-перевод послед нуклеотидов в аминокислотную последоват.

29)Реализация биологической информации в клетке.Транскрипция.постранскрипционные процессы. Феномен сплайсинга. Перенос биологической информации на белок (трансляция). В эукариотической клетке прочти вся ДНК находитсяв ядре, синтез белка протекает в цитоплазме на рибосомах. Значит существует посредник, который переносит наследственную информацию из ядра в цитоплазму, им является молекула и-РНК. Таким образоммеханизмы реализации наследственной информации в клетке складываетс из процессов транскрипции и трансляции, они же идет при активной работе генов. Транскрипция - это синтез молекулы РНК на ДНК, как на матрице, сложныйферментативный процесс, кот требует расхода энергии АТФ. Участок 1 цепи ДНК явл матрицей для синтеза мол-лы РНК. Синтез идет из своб нуклеотидов и основан на принципе комплементарности. Основной фермент синтез - РНК-полимераза. В прокариотической клетке сущ вид данного фермента. В эукариотич клетке 3 вида данного фермента: 1)РНК-полимераза1 – отвечает за синтез р-РНК 2)РНК-полимераза2 – за синтез и-РНК 3)РНК-полимераза3 отвечает за все малнькие молекулы РНК, частности за т-РНК и некоторые виды р-РНК с малой молекулярной массой. Прочес транскрипции состоит из 3 этапов: инициация (начало); элонгация (удлинение); терминация (конец). На первом этапе фермент РНК полимераза узнает опред послед нуклеотидов перед геном. Эта послед нуклеотидов наз пронатор . Узнав пронатор РНК полимераза фиксируется на ней. При этом расплетается двойная спираль ДНК. Свободным становится участок соответствующий данному гену. Участок 1 цепи ДНК станов матрицей для синтеза мол-лы РНК. Во время второй стадии РНК полимераза движется вдоль участка ДНК, синтез мол-лу РНК в направлении 5"-3". При 3 стадии: Синтез РНК продол до тех пор пока РНК полимераза не достиг опред послед нуклеотидов в конце гена. Эти послед нуклеотидов называются терминирующий сигнал транскрипции или стоп сигнал. Тут транскрипция закончилась. Вывод: в рез транскрипции синтезируется первичный транскрипт иРНК, р-РНК, т-РНК.



Первичный транскрипт и-РНК. В прокариотической клеткесразу синтезируется зрелая молекула и-рнк, которая становится матрицей для синтеза молекулы белка. В эукариотиеской клетке синтезируется незрелая молекула и-РНК, которая называется про-и-РНК. Затем в ядре по окончанию транскрипции происходит созревание в ядре – процессинг. Он включает 3 стадии: 1) Кэпирование. К5’концу молекулы про-иРНК присоединяется один химически модифицированный нуклеотид – метилгуанозил. Образуется кэп-структура. Эта структура в дальнейшем способствует связыванию и-РНК с рибосомой. 2) Полиаденилирование. К 3’концу про-и-РНК присоединяются 100-200 адениловых нуклеотидов. Образуется полиаденилированный участок, он стабилизирует молекуку и-РНК и способствует ее выходу из ядра в цитоплазму.

3) Сплайсинг. В мол-ле и-РНК содер экзоны и интроны. Сплайсинг- это удаление интронов из молекулы про-и-РНК и соединение экзонов при помощи лигаз. В результате процессинга образуется зрелая –РНК, которая по длинне сообветствует1\10 первичного транскрипта. Затем эта РНК уходит в цитоплазму, по том только 3-5% покидают ядро, а остальные в нем разрушаются. Трансляция . Компоненты необходим для биосинтеза белка: амии-ты,т-рнк,и- рнк, рибосомы, АТФ, ферменты. Трансляция склад из 3этапов: инициация,элонгация,терминация. Инициация :образуется комплекс и-РНК и рибосомы. Этому способствует кэпучасток и-РНК. К данному копмлексу подходит первая т-РНК-инициаторная. Своим антикодоном т-РИК узнает инициаторный кодон в и-РНК-АУГ(митионин). В эукариотической клетке первая аминокислота полипептидной цепи является метионином. По окончанию биосинтеза белка эта аминокислота может удаляться из полипептидной цепи. Элонгация : в рибосоме выд функционал центр из 2-х уч-ков: а-участок(аминокислота-т-РНК связывающий участок, в этот участок приходит т-РНК с аминокислотой, т.е. аминоацил-т-РНК), б)участок(пептид-т-РНК связ уч-к. в этом участке находится т-РНК, связанная с пептидом – пепитдил-т-РНК). С функционированием этих участков связано удлинение цепи белка. Допустим определенная пептидная цепь уже синтезирована, комплекс пептидил-т-РНК находится в Р-участке рибосомы. В А-участок рибосомы приходит т-РНК с аминокислотой. Если антикодон т-РНК комплиментарен кодону и-РНК, то данная т-РНК с аминокислотой остается в А-участке. Ферменты рибосомы разрывают связь между т-РНК и пептидом, который находится в Р-участке, свободная т-РНК уходит тз Р-участка. Дрге ферменты рибосомы – трансферазы устанавливают пептидную связь между пепидом и аминокислотой, находящейся в А-участке рибосомы. Так и происходит удлиление пептидной цепи на одну аминокислоту. Рибосома делает один шаг, равный 3 нуклеотидам вдоль молекулы и-РНК, комплекс т-РНК-пептид перемещается из А-участка в Р-участок, А-участок же свободен и готов принять новую т-РНК с аминокислотой. Терминация – удлинение полипептидной цепи идет до тех пор пока А-участок рибосомы не придет к одному из стоп-кодонов, т.к. им не соответствует ни одна аминокислота, и на этом заканчивается биосинтез бекла, освобождается полипептидная цепь, молекула и-РНК, а рибосома распадается на субъединицы. Если клетке необходимо большое количество данного белка, то образуется комплекс нескольких рибосом и и-РНК – полисома .

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: