Дыхание закон Бойля –Мариотта. Законы Бойля – Мариотта, Гей-Люссака, Шар­ля Уравнение бойля

Изучение зависимости между параметрами, характеризующими состояние данной массы газа, начнем с изучения газовых процессов, протекающих при неизменности одного из параметров. Английский ученый Бойль (в 1669 г.) и французский ученый Мариотт (в 1676 г.) открыли закон, который выражает зависимость изменения давления от изменения объема газа при постоянной температуре. Проведем следующий опыт.

Вращением рукоятки будем изменять объем газа (воздуха) в цилиндре А (рис. 11, а). По показанию манометра заметим что и давление газа при этом изменяется. Будем менять объем газа в сосуде (объем определяется по шкале В) и, замечая давление, запишем их в табл. 1. Из нее видно, что произведение объема газа на его давление было почти постоянным: во сколько раз "уменьшался объем газа, во столько же раз увеличивалось его давление.

В результате подобных, более точных, опытов было открыто: для данной массы газа при постоянной температуре давление газа изменяется обратно пропорционально изменению объема газа. Это и есть формулировка закона Бойля-Мариотта. Математически он для двух состояний запишется так:


Процесс изменения состояния газа при постоянной температуре называется изотермическим. Формула закона Бойля-Мариотта является уравнением изотермического состояния газа. При постоянной температуре средняя скорость движения молекул не меняется. Изменение объема газа вызывает изменение числа ударов молекул о стенки сосуда. Это и есть причина изменения давления газа.

Изобразим графически этот процесс, например для случая V = 12 л, р = 1 ат. . Будем откладывать на оси абсцисс объем газа, а на оси ординат - его давление (рис. 11, б). Найдем точки, соответствующие каждой паре значений V и р, и, соединив их между собой, получим график изотермического процесса. Линия, изображающая зависимость между объемом и давлением газа При постоянной температуре, называется изотермой. Изотермические процессы в чистом виде не встречаются. Но нередки случаи, когда температура газа мало меняется, например при накачивании компрессором воздуха в баллоны, при впуске горючей смеси в цилиндр двигателя внутреннего сгорания. В таких случаях расчеты объема и давления газа производятся по закону Бойля- Мариотта * .

Учеными, изучающими термодинамиче-ские системы, было установлено, что из-менение одного макропараметра системы ве-дет к изменению остальных. Например, по-вышение давления внутри резинового шари-ка при его нагревании вызывает увеличение его объема; повышение температуры твердо-го тела ведет к увеличению его размеров и т. п.

Эти зависимости могут быть довольно сложными. Поэтому сначала рассмотрим су-ществующие связи между макропараметра-ми на примере простейших термодинами-ческих систем, например для разреженных газов. Экспериментально установленные для них функциональные зависимости между фи-зическими величинами называют газовыми законами.

Роберт Бойль (1627—1691). Известный английский физик и химик, который исследовал свойства воздуха (масса и упругость воздуха, степень его разре-женности). На опыте показал, что тем-пература кипения воды зависит от дав-ления окружающей среды. Изучал так-же упругость твердых тел, гидростатику, световые и электрические явления, впе-рвые высказал мнение о сложном спек-тре белого света. Ввел понятие «хими-ческий элемент».

Первый газовый закон был открыт анг-лийским ученым Р. Бойлем в 1662 г. при исследовании упругости воздуха. Он взял длинную согнутую стеклянную трубку, за-паянную с одного конца, и начал наливать в нее ртуть до тех пор, пока в коротком колене не образовался небольшой закрытый объем воздуха (рис. 1.5). Затем доливал ртуть в длинное колено, изучая зависимость между объемом воздуха в запаянном конце трубки и давлением, созданным ртутью в левом колене. Предположение ученого о том, что между ними существует опреде-ленная зависимость, подтвердилось. Срав-нивая полученные результаты, Бойль сформу-лировал следующее положение:

между дав-лением и объемом данной массы газа при постоянной температуре существует обратная зависимость: p ~ 1 / V.

Эдм Мариотт

Эдм Мариотт (1620—1684) . Француз-ский физик, изучавший свойства жид-костей и газов, столкновения упругих тел, колебания маятника, естественные оптические явления. Установил зави-симость между давлением и объемом газов при постоянной температуре и объяснил на ее основании разные при-менения, в частности, как найти высоту местности по показаниям барометра. До-казал увеличение объема воды при ее замерзании.

Немного позже, в 1676 году француз-ский ученый Э. Мариотт независимо от Р. Бойля обобщенно сформулировал газо-вый закон, который теперь называют законом Бойля-Мариотта. По его утверждению, если при определенной температуре данная масса газа занимает объем V 1 при давлении p 1 , а в другом состоянии при этой же температуре его давление и объем рав-няются p 2 и V 2 , то справедливо соотно-шение:

p 1 / p 2 = V 2 / V 1 или p 1 V 1 = p 2 V 2 .

Закон Бойля-Мариотта : если при постоянной темпе-ратуре происходит термодинамический про-цесс, вследствие которого газ переходит из одного состояния (p 1 и V 1) в другое (p2и V 2), то произведение давления на объем данной массы газа при постоянной температуре яв-ляется постоянным:

pV = const. Материал с сайта

Термодинамический процесс, который про-исходит при постоянной температуре, на-зывается изотермическим (от гр. isos — рав-ный, therme — теплота). Графически на коор-динатной плоскости pV он изображается гиперболой, которая называется изотермой (рис. 1.6). Разным температурам отвечают разные изотермы — чем выше температура, тем выше на координатной плоскости pV находится гипербола (T 2 > T 1). Очевидно, что на координатной плоскости рТ и VT изо-термы изображаются прямыми, перпендику-лярными оси температур.

Закон Бойля-Мариотта устанав-ливает соотношение между дав-лением и объемом газа для изотермических процессов: при постоянной температуре объем V данной массы газа обратно пропорциональный его давлению p .

Как мы дышим?

Объем воздуха между легочными пузырьками и внешней средой осуществляется в результате ритмичных дыхательных движений грудной клетки. При вдохе объем грудной клетки и легких увеличивается, при этом давление в них понижается и воздух через воздухоносные пути (нос, горло) входит в легочные пузырьки. При выходе объем грудной клетки и легких уменьшается, давление в легочных пузырьках повышается и воздух с избыточным содержанием оксида углерода (углекислого газа) выходит из легких наружу. Здесь применим закон Бойля –Мариотта, то есть зависимость давления от объема.

Долго ли мы сможем не дышать? Даже тренированные люди могут задерживать дыхание на 3-4 и даже 6 минут, но не дольше. Более длительное кислородное голодание может привести к смерти. Поэтому кислород должен поступать в организм постоянно. Дыхание – перенос кислорода из окружающей среды внутрь организма. Основной орган дыхательной системы

– легкие, вокруг которых имеется плевральная жидкость.

Применение закона Бойля-Мариотта

Газовые законы активно работают не только в технике, но и в живой природе, широко применяются в медицине.

Закон Бойля-Мариотта начинает «работать на человека»(как впрочем и на любого млекопитающее) с момента его рождения, с первого самостоятельного вздоха.

При дыхании межреберные мышцы и диафрагма периодически изменяют объем грудной клетки. Когда грудная клетка расширяется, давление воздуха в легких падает ниже атмосферного, т.е. «срабатывает» изотермический закон (pv=const), и в следствие образовавшегося перепада давлений происходит вдох.

Дыхание легочное: диффузия газов в легких

Для того, чтобы обмен путем диффузии был достаточно эффективным, обменная поверхность должна быть большой, а диффузинное расстояние - маленьким. Диффузионный барьер в легких полностью отвечает этим условиям. Общая поверхность альвеол составляет около 50 - 80 кв. м. По своим структурным особенностям ткань легких подходит для осуществления диффузии: кровьлегочных капилляров отделена от альвеолярного пространства тончайшим слоем ткани. В процессе диффузии кислород проходит через альвеолярный эпителий, интерстициальное пространство между основными мембранами, эндотелий капилляра, плазму крови, мембрану эритроцита и внутреннюю среду эритроцита. Суммарное диффузное расстояние составляет всего около 1 мкм.

Молекулы углекислого газа диффундируют по тому же пути, но в обратном направлении - от эритроцита к альвеолярному пространству. Однако диффузия углекислого газа становится возможной только после высвобождения его из химической связи с другими соединениями.

При прохождении эритроцита через легочные капилляры время, в течении которого возможна диффузия (время контакта), относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжение дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.

Опыт определить дыхательный объём и жизненную ёмкость лёгких.

Цель: определить дыхательный объём и жизненную ёмкость лёгких.

Оборудование: воздушный шарик, измерительная лента.

Ход работы :

Надуем воздушный шарик, как можно сильнее за N (2) спокойных выдохов.

Измерим шарика диаметр и рассчитаем его объем по формуле:

Где d–диаметр шара.

Вычислим дыхательный объем своих лёгких: , где N – числи выдохов.

Надуем шарик ещё два раза и вычислим среднее значение дыхательного объёма своих лёгких

Определим жизненную ёмкость лёгких (ЖЕЛ) – наибольший обьем воздуха, который человек может выдохнуть после самого глубокого вдоха. Для этого, не отнимая шарик ото рта, сделаем глубокий вдох через нос и максимальный выдох через рот в шарик. Повторим 2 раз. , где N=2.

Количественное соотношение между объемом и давлением газа впервые установил Роберт Бойль в 1662 г.* Закон Бойля-Мариотта гласит, что при постоянной температуре объем газа обратно пропорционален его давлению. Этот закон применим к любому фиксированному количеству газа. Как видно из рис. 3.2, его графическое представление может быть разным. Левый график показывает, что при малом давлении объем фиксированного количества газа велик. Объем газа уменьшается при повышении его давления. Математически это записывается так:

Однако обычно закон Бойля-Мариотта записывают в виде

Такая запись позволяет, например, зная исходный объем газа V1 и его давление р вычислить давление р2 в новом объеме V2.

Закон Гей-Люссака (закон Шарля)

В 1787 г. Шарль показал, что при постоянном давлении объем газа изменяется (пропорционально его температуре. Эта зависимость представлена в графической форме на рис. 3.3, из которого видно, что объем газа линейно связан с его температурой. В математической форме эта зависимость выражается так:

Закон Шарля чаще записывают в другом виде:

V1IT1 = V2T1 (2)

Закон Шарля усовершенствовал Ж. Гей-Люссак, который в 1802 г. установил, что объем газа при изменении его температуры на 1°С изменяется на 1/273 часть того объема, который он занимал при 0°С. Отсюда следует, что если взять произвольный объем любого газа при 0°С и при постоянном давлении уменьшить его температуру на 273°С, то конечный объем окажется равным нулю. Это соответствует температуре -273°С, или 0 К. Такая температура называется абсолютным нулем. В действительности ее нельзя достичь. На рис. 3.3 показано, как экстраполяция графиков зависимости объема газа от температуры приводит к нулевому объему при 0 К.

Абсолютвый нуль, строго говоря, недостижим. Однако в лабораторных условиях удается достичь температур, отличающихся от абсолютного нуля всего на 0,001 К. При таких температурах беспорядочные движения молекул практически прекращаются. Это приводит к появлению удивительных свойств. Например, металлы, охлажденные до температур, близких к абсолютному нулю, почти полностью утрачивают электрическое сопротивление и становятся сверхпроводящими*. Примером веществ с другими необычными низкотемпературными свойствами является гелий. При температурах, близких к абсолютному нулю, у гелия исчезает вязкость и он становится сверхтекучим.

* В 1987 г. обнаружены вещества (керамика, спеченная из оксидов лантаноидных элементов, бария и меди), которые становятся сверхпроводящими при сравнительно высоких температурах, порядка 100 К (- 173 °С). Эти «высокотемпературные» сверхпроводники открывают большие перспективы в технике.- Прим. перев.

Основные законы идеальных газов используются в технической термодинамике для решения целого ряда инженерно-технических задач в процессе разработки конструкторско-технологическойдокументации авиационной техники, авиадвигателей; их изготовления и эксплуатации.

Эти законы первоначально были получены экспериментальным путем. В последующем они были выведены из молекулярно-кинетической теории строения тел.

Закон Бойля – Мариотта устанавливает зависимость объема идеального газа от давления при постоянной температуре. Эту зависимость вывел английский химик и физик Р. Бойль в 1662 году задолго до появления ки­нетической теории газа. Независимо от Бойля в 1676 го­ду этот же закон открыл Э. Мариотт. Закон Роберта Бойля (1627 – 1691), английского химика и физика, установившего этот закон в 1662 году, и Эдма Мариотта (1620 – 1684),французского физика, установившего этот закон в 1676 году: произведение объёма данной массы идеального газа на его давление постоянно при постоянной температуре или.

Закон получил на­звание Бойля – Мариотта и утверждает, что при посто­янной температуре давление газа обратно пропорцио­нально его объему .

Пусть при постоянной температуре некоторой массы газа имеем:

V 1 – объем газа при давлении р 1 ;

V 2 – объем газа при давлении р 2 .

Тогда согласно закону мож­но записать

Подставив в это уравнение значение удельного объема и принимая массу данного газа т = 1кг, полу­чим

p 1 v 1 =p 2 v 2 илиpv = const .(5)

Плотность газа – величина, обратная его удельному объему:

тогда уравнение (4) примет вид

т. е. плотности газов прямо пропорциональны их абсо­лютным давлениям. Уравнение (5) можно рассматривать как новое выражение закона Бойля – Мариотта которое можно сформулировать так: произведение давления на удельный объем определенной массы одного и того же идеального газа для различных его состояний, но при одинаковой температуре, есть величина постоянная .

Этот закон может быть легко получен из основного уравнения кинетической теории газов. Заме­нив в уравнении (2) число молекул в единице объема отношением N /V (V – объем данной массы газа, N – число молекул в объеме) получим

Поскольку для данной массы газа величины N и β постоянны, то при постоянной температуре T =const для произвольного количества газа уравнение Бойля – Мариотта будет иметь вид

pV = const , (7)

а для 1 кг газа

pv = const .

Изобразим графически в системе координат р v из­менение состояния газа.

Например, давление данной массы газа объемом 1 м 3 равно 98 кПа, тогда, используя уравнение (7), определим давление газа объемом 2 м 3



Продолжая расчеты, получим следующие данные: V (м 3) равно 1; 2; 3; 4; 5; 6; соответственно р (кПа) равно 98; 49; 32,7; 24,5; 19,6; 16,3. По этим данным строим график (рис. 1).

Рис. 1. Зависимость давленияидеального газа от объема при

постоянной температуре

Полученная кривая – гипер­бола, полученная при пос­тоянной температуре, назы­вается изотермой, а процесс, протекающий при постоян­ной температуре, – изотер­мическим. Закон Бойля – Мариотта – приближенный и при очень больших дав­лениях и низких темпера­турах для теплотехнических расчетов неприемлем.

Закон Г е й – Л ю с с а к а определяет зависимость объ­ема идеального газа от температуры при постоян­ном давлении. (Закон Жозефа Луи Гей-Люссака (1778 – 1850), французского химика и физика, установившего впервые этот закон в 1802 году: объём данной массы идеального газа при постоянном давлении линейно возрастает с ростом температуры , то есть, где - удельный объём при; β – коэффициент объёмного расширения равный 1/273,16 на 1 о С.) Закон уста­новлен экспериментально в 1802 г. французским физи­ком и химиком Жозефом Луи Гей-Люссаком, именем которого назван. Исследуя на опыте тепловое расширение газов, Гей-Люссак от­крыл, что при неизменном давлении объемы всех газов увеличиваются при нагревании почти одинаково, т. е. при повышении температуры на 1°С объем некоторой массы газа увеличивается на 1/273 объема, который дан­ная масса газа занимала при 0°С.

Увеличение объема при нагревании на 1 °С на одну и ту же величину не случайно, а как бы является след­ствием закона Бойля – Мариотта. Вначале газ нагрева­ется при постоянном объеме на 1 °С, давление его увели­чивается на 1/273 начального. Затем газ расширяется при постоянной температуре, причем его давление уменьшается до начального, а объем во столько же раз увеличи­вается. Обозначив объем некоторой массы газа при 0°С через V 0 , а при температуре t °C через V t запишем закон следующим выражением:

Закон Гей-Люссака также можно изобразить графи­чески.

Рис. 2. Зависимость объема идеального газа от температу­ры при постоянном

давлении

Используя уравнение (8) и принимая температуру равной 0°С, 273 °С, 546 °С, вычислим объем газа, равный соответственно V 0 , 2V 0 , 3V 0 . Отложим по оси абсцисс в некотором условном масштабе (рис. 2) температуры га­за, а по оси ординат – соответствующие этим темпера­турам объемы газа. Соединяя на графике полученные точки, получим прямую, представляющую собой график зависимости объема идеального газа от температуры при постоянном давлении. Такая прямая называется изобарой , а процесс, протекающий при постоянном дав­лении – изобарным .

Обратимся еще раз к графику изменения объема га­за от температуры. Продолжим прямую до пересечения, с осью абсцисс. Точка пересечения будет соответствовать абсолютному нулю.

Предположим, что в уравнении (8) значение V t = 0, тогда имеем:

но так как V 0 ≠ 0, следовательно, откуда t = – 273°C. Но – 273°C=0К, что и требовалось дока­зать.

Представим уравнение Гей-Люссака в виде:

Помня, что 273+t =Т , а 273 К=0°С, получим:

Подставляя в уравнение (9) значение удельного объема и принимая т =1 кг, получим:

Отношение (10) выражает закон Гей-Люссака, кото­рый можно сформулировать так: при постоянном давле­нии удельные объемы одинаковых масс одного и того же идельного газа прямо пропорциональны его абсолютным температурам . Как видно из уравнения (10), закон Гей-Люссака утверждает, что частное от деления удельногообъема данной массы газа на его абсолютную темпера­туру есть величина постоянная при данном постоянном давлении .

Уравнение, выражающее закон Гей-Люссака, в об­щем виде имеет вид

и может быть получено из основного уравнения кине­тической теории газов. Уравнение (6) представим в виде

при p =const получаем уравнение (11). Закон Гей-Люссака широко применяется в технике. Так, на основе закона объемного расширения газов по­строен идеальный газовый термометр для измерения температур в пределах от 1 до 1400 К.

Закон Шарля устанавливает зависимость давле­ния данной массы газа от температуры при постоянном объеме.ЗаконЖана Шарля (1746 – 1823),французского ученого, установившего этот закон впервые в 1787 году, и уточненный Ж.Гей-Люссакомв 1802 году: давление идеального газа неизменной массы и объёма возрастает при нагревании линейно, то есть, где р о – давление приt = 0°C.

Шарль определил, что при нагревании в по­стоянном объеме давление всех газов увеличивается почти одинаково, т.е. при повышении температуры на 1 °С давление любого газа увеличивается точно на1/273 того давления, которая данная масса газа имела при 0°С. Обозначим давление некоторой массы газа в сосуде при 0°С через р 0 , а при температуре t ° через p t . При по­вышении температуры на 1°С давление увеличивается на, а при увеличении на t °Cдавление увеличива­ется на. Давление при температуре t °Cравно начальному плюс прирост давления или

Формула (12) позволяет вычислить давление при лю­бой температуре, если известно давление при 0°С. В инженерных расчетах очень часто используют уравнение (закон Шарля), которое легко получается из соотношения (12).

Поскольку, а 273 + t = Т или 273 К = 0°С = Т 0

При постоянном удельном объеме абсолютные давле­ния идеального газа прямо пропорциональны абсолют­ным температурам. Поменяв местами средние члены пропорции, получим

Уравнение (14) есть выражение закона Шарля в об­щем виде. Это уравнение легко вывести из формулы (6)

При V =const получаем общее уравнение закона Шарля (14).

Для построения графика зависимости данной массы газа от температуры при постоянном объеме воспользу­емся уравнением (13). Пусть, например, при температу­ре 273 К=0°С давление некоторой массы газа 98 кПа. По уравнению давление при температуре 373, 473, 573 °С соответственно будет 137 кПа (1,4 кгс/см 2), 172 кПа (1,76 кгс/см 2), 207 кПа (2,12 кгс/см 2). По этим данным строим график (рис. 3). Полученная прямая называется изохорой, а процесс, протекающий при постоянном объеме, – изохорным.

Рис. 3. Зависимость давления газа от темпера­туры при постоянном объеме



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: