Какие углы дают сумме 180 градусов. Теорема о сумме углов треугольника. Виды по величине углов

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть

    Теорема. Сумма внутренних углов треугольника равна двум прямым углам.

    Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что

    ∠1 + ∠2 + ∠3 = 180°.

    Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно АС.

    При вершине В мы получили три угла: ∠4, ∠2 и ∠5. Их сумма составляет развёрнутый угол, следовательно, она равна 180°:

    ∠4 + ∠2 + ∠5 = 180°.

    Но ∠4 = ∠1 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей АВ.

    ∠5 = ∠3 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей ВС.

    Значит, ∠4 и ∠5 можно заменить равными им ∠1 и ∠3.

    Следовательно, ∠1 + ∠2 + ∠3 = 180°. Теорема доказана.

    2. Свойство внешнего угла треугольника.

    Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

    В самом деле, в треугольнике ABC (рис. 209) ∠1 + ∠2 = 180° - ∠3, но и ∠ВСD, внешний угол этого треугольника, не смежный с ∠1 и ∠2, также равен 180° - ∠3.

    Таким образом:

    ∠1 + ∠2 = 180° - ∠3;

    ∠BCD = 180° - ∠3.

    Следовательно, ∠1 + ∠2= ∠BCD.

    Выведенное свойство внешнего угла треугольника уточняет содержание ранее доказанной теоремы о внешнем угле треугольника, в которой утверждалось только, что внешний угол треугольника больше каждого внутреннего угла треугольника, не смежного с ним; теперь же устанавливается, что внешний угол равен сумме обоих внутренних углов, не смежных с ним.

    3. Свойство прямоугольного треугольника с углом в 30°.

    Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

    Пусть в прямоугольном треугольнике АСВ угол В равен 30° (рис. 210). Тогда другой его острый угол будет равен 60°.

    Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний.

    Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.

    Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

    Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

    Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

    Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

    Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

    Цели и задачи:

    Образовательные:

    • повторить и обобщить знания о треугольнике;
    • доказать теорему о сумме углов треугольника;
    • практически убедиться в правильности формулировки теоремы;
    • научиться применять полученные знания при решении задач.

    Развивающие:

    • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

    Воспитательные:

    • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

    Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

    Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

    Тип урока : изучение нового материала.

    Ход урока

    I. Организационный момент

    Приветствие. Психологический настрой учащихся на работу.

    II. Разминка

    С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

    Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

    Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:

    Рисунок 1

    III. Формулируем задачу урока

    Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

    Ученики формулируют задачу урока - найти сумму углов треугольника.

    IV. Объяснение нового материала

    Практическая часть (способствует актуализации знаний и навыков самопознания).Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

    Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

    а)
    Рисунок 2

    б)
    Рисунок 3

    в)
    Рисунок 4

    г)
    Рисунок 5

    д)
    Рисунок 6

    После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

    Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

    Ученики: Сумма углов треугольника равна 180 градусов.

    Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


    Рисунок 7


    Рисунок 8

    Чертежи высвечиваются на экране через проектор.

    Учитель предлагает с помощью чертежей доказать теорему.

    Затем доказательство проводится с применением УМК «Живая математика» . Учитель на компьютере проецирует доказательство теоремы.

    Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


    Рисунок 9

    Доказательство:

    а)

    Рисунок 10

    б)

    Рисунок 11

    в)

    Рисунок 12

    Учащиеся в тетради делает краткую запись доказательства теоремы:

    Теорема: Сумма углов треугольника равна 180°.


    Рисунок 13

    Дано: Δ АВС

    Доказать: А + В + С = 180°.

    Доказательство:

    Что требовалось доказать.

    V. Физ. минутка.

    VI. Объяснение нового материала (продолжение)

    Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

    В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

    Если в треугольнике все углы острые, то он называется остроугольным .

    Если один из углов треугольника тупой, то он называется тупоугольным .

    Если один из углов треугольника прямой, то он называется прямоугольным .

    Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

    Таблица 1

    Вид треугольника Равнобедренный Равносторонний Разносторонний
    Прямоугольный
    Тупоугольный
    Остроугольный

    VII. Закрепление изученного материала.

    1. Решить задачи устно:

    (Чертежи высвечиваются на экране через проектор)

    Задача 1. Найдите угол С.


    Рисунок 14

    Задача 2. Найдите угол F.


    Рисунок 15

    Задача 3. Найдите углы К и N.

    Рисунок 16

    Задача 4. Найдите углы P и T.


    Рисунок 17

    1. Решить задачу самостоятельно № 223 (б, г).
    2. Решить задачу на доске и в тетрадях уч-ся №224.
    3. Вопросы: Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол.
    4. (выполняется устно) На карточках, имеющихся на каждом столе, изображены различные треугольники. Определите на глаз вид каждого треугольника.


    Рисунок 18

    1. Найдите сумму углов 1, 2 и 3.


    Рисунок 19

    VIII. Итог урока.

    Учитель: Что мы узнали? Для любого ли треугольника применима теорема?

    IX. Рефлексия.

    Передайте мне свое настроение, ребята! С обратной стороны треугольника изобразите свою мимику.


    Рисунок 20

    Домашнее задание: п.30 (1 часть), вопрос 1 гл. IV стр. 89 учебника; № 223 (а, в), № 225.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: