Окислительно-восстановительные процессы. окислительно-восстановительные потенциалы. Окислительно-восстановительные системы Окислительно восстановительные системы

(ОВ) И ОВ –ЭЛЕКТРОДЫ.

В зависимости от механизма окисления – восстановления разнообразные ОВ - системы можно разделить на два типа:

1-ый тип : ОВ – системы, в которых окислительно – восстановительный процесс связан с передачей только электронов, например: Fe³ + +ē ↔ Fe² +

2-ой тип : ОВ- системы, в которых окислительно – восстановительный процесс связан не только с передачей электронов, но и протонов, например:

С 6 Н 4 О 2 + 2Н + +2ē ↔ С 6 Н 4 (ОН) 2

хинон гидрохинон

MnO 4 - + 8H + + 5ē ↔ Mn² + + 4H 2 O

Инертный металл в сочетании с ОВ – системой называют окислительно – восстановительным или редокс – электродом, а возникающий на этом электроде потенциал называют окислительно – восстановительным (ОВ) или редокс – потенциалом.

Инертный металл принимает лишь косвенное участие в потенциалопределяющей реакции, являясь посредником в передаче электронов от восстановленной формы вещества Red к окисленной ОХ.

При погружении инертного металла в раствор, содержащий избыток окисленной формы железа, металлическая пластинка заряжается положительно (рис. 10 а)

При избытке восстановленной формы железа поверхность платины заряжается отрицательно (рис. 10 б).

Рис. 10. Возникновение ОВ-потенциала

Передача электронов с одного иона на другой через металл приводит к образованию на поверхности металла ДЭС.

Межионный обмен электронами возможен и без металла. Но ионы Fe²+ и Fe³+ сольватированы различным образом и для переноса электронов необходимо преодолеть энергетический барьер. Переход электронов от ионов Fe²+ на металл и с поверхности металла к иону Fe³+ характеризуется меньшей энергией активации.

При равенстве активностей ионов Fe²+ и Fe³+ платиновая пластина заряжается положительно, т.к. электроно – акцепторная способность ионов Fe³+ больше чем электроно – донорная способность Fe²+.

Уравнение Петерса.

Количественная зависимость ОВ – потенциала от природы ОВ – системы (φ°r), соотношения активностей окисленной и восстановленной форм, температуры, и от активности ионов водорода устанавливается уравнением Петерса.



1-ый тип : φr = φ°r + ∙ ln

2-ой тип : φr = φ°r + ∙ ln

где φr - ОВ - потенциал, В;

φ°r - стандартный ОВ - потенциал, В;

z – число электронов, участвующих в ОВ – процессе;

а (Ох) – активность окисленной формы, моль/л;

а (Red) – активность восстановительной формы, моль/л;

m - число протонов;

а(н +) – активность ионов водорода, моль/л.

Стандартным ОВ – потенциалом называют потенциал, возникающий на границе раздела инертный металл – раствор, в котором активность окисленной формы равна активности восстановленной формы, а для системы второго типа, кроме того, активность ионов водорода равна единице.

Классификация обратимых электродов.

Рассмотрев принцип работы электродов можно сделать вывод, что по свойствам веществ, участвующих в потенциалоопределяющих процессах, а также по устройству все обратимые электроды делят на следующие группы:

Электроды первого рода;

Электроды второго рода;

Ионоселективные электроды;

Окислительно – восстановительные электроды.

1. Гальванический элемент представляет собой систему, производящую работу, а не потребляющую её, поэтому ЭДС элемента целесообразно считать положительной величиной.

2. ЭДС элемента рассчитывают, вычитая из числового значения потенциала правого электрода числовое значение потенциала левого электрода – правило «правого плюса». Поэтому схему элемента записывают так, чтобы левый электрод был отрицательным, а правый – положительным.

3. Границу раздела между проводниками первого и второго ряда обозначают одной чертой: Zn׀ZnSO4 ; Cu׀CuSO4

4. Границу раздела между проводниками второго рода изображают пунктирной линией: ZnSO4 (р) ׃ CuSO4 (р)

5. Если на границе раздела двух проводников второго рода используют электролитный мостик, его обозначают двумя чертами: ZnSO4 (р) ׀׀ CuSO4(р).

6. Компоненты одной фазы записываются через запятую:

Pt|Fe³+, Fe²+ ; Pt, H2 |HCl(p)

7. Уравнение электродной реакции записывают, чтобы слева располагались вещества в окислительной форме, а справа – в восстановительной.

Страница 4 из 8

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ И РЕДОКС-СИСТЕМЫ В ВИНЕ

Общие сведения об окислительно-восстановительных процессах

Вещество окисляется, когда оно связывает кислород или отдает водород; например, при сгорании серы S образуется сернистый ангидрид SO 2 , при окислении сернистой кислоты H 2 SO3 - серная кислота H5SO4, а при окислении сероводорода H 2 S - сера S; при окислении сульфата двухвалентного железа в присутствии кислоты образуется сульфат трехвалентного железа
4FeSO„ + 2H 2 SO4 + 02 = 2Fe2(SO4)3 + 2Н20.
или при распаде двухвалентного сульфата на анион SO~h катион Fe++ получают
4Fe++ + 6SO " + 4Н+ + 02 = 4Fe+++ + + 6SO~~ + 2H 2 0,
или, сокращая анионы, не участвующие в реакции, находят
4Fe++ + 4Н+ + 02 = 4Fe+++ + 2Н20.
Последняя реакция идентична в случае окисления другой соли двухвалентного железа; она не зависит от природы аниона. Следовательно, окисление иона двухвалентного железа в ион трехвалентного железа заключается в увеличении его положительного заряда за счет иона водорода, который теряет свой заряд, образуя атом водорода, который соединяется с кислородом, чтобы дать воду. В результате при таком окислении происходит увеличение положительного заряда катиона, или, что то же самое, уменьшение отрицательного заряда аниона. Например, окисление сероводорода H 2 S заключается в превращении иона серы S в серу (S). В действительности в обоих случаях наблюдается потеря отрицательных электрических зарядов или электронов.
В противоположность этому при восстановлении хпроисходит уменьшение положительного заряда катиона или увеличение отрицательного заряда аниона. Например, о предыдущей реакции можно сказать, что наблюдается восстановление иона Н+ в атомный водород Н и что в обратном направлении реакции происходит восстановление иона Fe+++ в ион Fe++. Таким образом, восстановление сводится к увеличению количества электронов.
Однако, когда речь идет об окислении органических молекул, термин «окисление» сохраняет свой смысл превращения одной молекулы в другую или совокупность других, более богатых кислородом или менее богатых водородом. Восстановление же представляет собой обратный процесс, например окисление спирта СНз-СН2ОН в альдегид СН3-СНО, затем в уксусную кислоту СН3-СООН:
-2Н +Н,0-2Н
СН3-СН2ОН -> СН3-СНО-->
-> СН3-СООН.
Процессы окисления органических молекул в клетке, которые постоянно встречаются в биологической химии и в микробиологии, происходят чаще всего путем дегидрирования. Они сочетаются с процессами восстановления и составляют окислительно-восстановительные процессы, например окисление при спиртовом брожении между глицериновым и уксусным альдегидом, катализируемое кодегидразой и ведущее к спирту:
СН2ОН-СНОН-СНО + СН3-СНО + Н20 -+ СН2ОН-СНОН-СООН+СН3-СН2ОН.
Здесь речь идет о необратимом окислительно-восстановительном процессе, который, однако, может стать обратимым в присутствии катализатора, как будет показано ниже. Примером окисления-восстановления посредством обмена электронов и обратимого даже в отсутствие какого-либо катализатора является равновесие
Fe+++ + Cu+ Fe++ + Cu++.
Оно является суммой двух элементарных реакций, которые поставляет электрон
Fe++++e Fe++ и Cu+ Cu++ + е.
Такие элементарные обратимые реакции составляют окислительно-восстановительные системы или редокс-системы.
Они представляют непосредственный интерес для энологии. Действительно, с одной стороны, как было показано, ионы Fe++ и Cu+ автоокисляемы, т. е. они окисляются непосредственно, без катализатора, растворенным молекулярным кислородом, и окисленные формы могут повторно окислять другие вещества, следовательно, эти системы составляют катализаторы окисления. С другой стороны, они являются возбудителями помутнений, которые всегда опасны с точки зрения практики виноделия, и именно это обстоятельство тесно связано с их свойством переходить от одной валентности к другой.
Общий вид ионизированной окислительно-восстановительной системы, т. е. образуемой в растворе ионами, заряженными положительно или отрицательно, можно выразить так:
Red =5± Ох + е (или пе).
Общий вид органической окислительно-восстановительной системы, в которой переход компонента, восстановленного в окисленный, происходит путем освобождения водорода, а не электронов:
Red * Ох + Н2.
Здесь Red и Ох представляют молекулы, не имеющие электрических зарядов. Но в присутствии катализатора, например, одной из выше показанных окислительно-восстановительных систем или некоторых ферментов клетки Н,2 находится в равновесии со своими ионами и составляет окислительно-восстановительную систему первого типа
Н2 *± 2Н+ + 2е,
откуда при суммировании двух реакций получаем равновесие
Red * Ox + 2H+ + 2e.
Таким образом, приходим к виду, аналогичному виду ионизированных систем, выделяющих электроны одновременно с обменом водорода. Следовательно, эти системы, как и предыдущие, электроактивны.
Нельзя определить абсолютный потенциал системы; можно лишь измерить разность потенциалов между двумя окислительно-восстановительными системами:
Redi + Ох2 * Red2 + Oxj.
На этом принципе основаны определение и измерение окислительно-восстановительного потенциала такого раствора, как вино.

Классификация окислительно-восстановительных систем

Для того чтобы лучше рассмотреть окислительно-восстановительные системы вина и понять их роль, целесообразно воспользоваться классификацией Вурмсера, которая подразделяет их на три группы:
1) вещества непосредственно электроактивные, которые в растворе, даже одни, прямо обмениваются электронами с инертным электродом из платины, принимающим вполне определенный потенциал. Эти изолированные вещества составляют редокс-системы.
К ним относятся: а) ионы тяжелых металлов, составляющих системы Cu++/Cu+ и Fe++/Fe+++; б) многие красители, так называемые красители окисления-восстановления, используемые для колориметрического определения окислительно-восстановительного потенциала; в) рибофлавин, или витамин Вг, и дегидрогеназы, в которые он входит (желтый фермент), участвуя в клеточном дыхании в винограде или в дрожжах в аэробиозе. Это - автоокисляемые системы, т. е. в присутствии кислорода они принимают окисленную форму. Для их окисления кислородом не требуется катализатора;
2) вещества, обладающие слабой электроактивностью, которые не реагируют или реагируют слабо на платиновый электрод и самостоятельно не обеспечивают условий для равновесия, но становятся электроактивными, когда они находятся в растворе в присутствии веществ первой группы в очень слабых концентрациях и дают в этом случае определенный потенциал. Вещества второй группы реагируют с первыми, которые катализируют их окислительно-восстановительное превращение и делают необратимые системы обратимыми. Следовательно, красители окисления-восстановления позволяют исследовать вещества этой группы, определять для них нормальный потенциал и классифицировать их. Точно так же присутствие в вине ионов железа и меди делает электроактивными системы, которые, будучи изолированными, не являются окислительно-восстановительными системами.
К ним относятся: а) вещества с энольной функцией с двойной связью (-СОН = СОН-), в равновесии с ди-кетоновой функцией (-СО-СО-), например витамин С, или аскорбиновая, кислота, редуктоны, дигидрдксималеи-новая кислота; б) цитохромы, которые играют основную роль в клеточном дыхании как у растений, так и у животных;
3) электроактивные вещества в присутствии диастаз. Их дегидрирование катализируется дегидрогеназами, роль которых состоит в обеспечении переноса водорода из одной молекулы в другую. В целом этим системам придают электроактивность, которой они потенциально обладают, добавляя в среду катализаторы, обеспечивающие окислительно-восстановительные превращения; тогда они создают условия для окислительно-восстановительного равновесия и определенного потенциала.
Это системы молочная кислота - пировиноградная кислота в присутствии автолизата молочных бактерий, которые приводят в окислительно-восстановительное равновесие СН3- СНОН-СООН и СНз-СО-СООН - систему, участвующую в молочнокислом брожении; этанол - этаналь, которая соответствует переходу альдегида в спирт в процессе спиртового брожения, или же система бутандиол - ацетоин. Последние системы не имеют значения для самого вина, хотя и можно предположить, что вино может содержать дегидразы в отсутствие микробиальных клеток, но они имеют значение для спиртового или молочнокислого брожения, а также для готового вина, содержащего живые клетки. Они объясняют, например, восстановление этаналя в присутствии дрожжей или бактерий - факт, известный с давних пор.
Для всех этих окисляющих или восстанавливающих веществ можно определить окислительно-восстановительный потенциал, нормальный или возможный, для которого система наполовину окислена и наполовину восстановлена. Это позволяет классифицировать их в порядке окисляющей или восстанавливающей силы. Можно также заранее предвидеть, в какой форме (окисленной или восстановленной) находится данная система в растворе с известным окислительно-восстановительным потенциалом; предсказать изменения содержания растворенного кислорода; определить вещества, которые окисляются или восстанавливаются первыми. Этот вопрос достаточно освещен в разделе «Понятие об окислительно-восстановительном потенциале».

В формировании химических свойств почв окислительно-восстановительные процессы занимают одно из ведущих мест. Важнейшими факторами, определяющими окислительно-восстановительное состояние почвенных горизонтов, является кислород почвенного воздуха и почвенных растворов, окисные и закисные соединения железа, марганца, азота, серы, органическое вещество, микроорганизмы.

Реакции окисления и восстановления всегда протекают одновременно. Окисление одного вещества, участвующего в реакции, сопровождается восстановлением другого вещества.

Под окислительно-восстановительными процессами понимается процессы, в которые в качестве возможной стадии входит переход электронов от одной частицы вещества к другой. Окисление является реакцией, при которой происходит присоединение кислорода к веществу или потеря веществом водорода или электронов. Восстановление - это потеря веществом кислорода, присоединение к веществу водорода или электронов.

Способность почвы вступать в окислительно-восстановительные реакции измеряется с помощью окислительно-восстановительного потенциала (ОВП).

Окислительно-восстановительный потенциал по отношению к водороду называют Eh. Эта величина зависит от концентрации и соотношения окислителей и восстановителей, образующихся в процессе почвообразования. Благодаря существованию в почвенных горизонтах определенных окислительно-восстановительных систем, можно определить разность потенциалов (Eh) в милливольтах при помощи пары электродов, погруженных в почву. Величины Eh в различных типах почв и почвенных горизонтах изменяются в пределах 100-800 мв, иногда имеет и отрицательные значения. Величина Eh существенно зависят от кислотно-щелочных условий среды, растительности и микроорганизмов.

В почвенных условиях значительная часть участвующих в окислительно-восстановительных реакциях компонентов представлена твердыми фазами. В реакциях с участием твердых фаз почва будет проявлять высокую буферность до тех пор, пока эти компоненты не прореагируют. Буферность - это способность почвы противостоять изменению ОВП при любых внешних воздействиях. Это понятие характеризует устойчивость окислительно-восстановительных систем почвы в природных динамических условиях и ее можно назвать динамической буферностью. В природной обстановке с малыми скоростями реагируют гумусовые вещества, минералы гидроокислов железа.

Почвы содержат большой набор окислительно-восстановительных систем: Fe3+ - Fe2+, Mn2+ - Mn3+ - Mn4+, Cu+ - Cu2+, Co2+ - Co3+, NO3‾ - NO2‾ - NН3‾, S6‾ - S2‾.

Различают обратимые и необратимые окислительно-восстановительные системы. Обратимыми являются такие системы, которые в процессе изменения окислительно-восстановительного режима не меняют суммарный запас компонентов. Необратимые системы в процессе изменения окислительно-восстановительного режима утрачивают часть веществ. Эти вещества переходят в газообразное состояние или выпадают в осадок. Как правило, в почвах преобладают необратимые системы.

К обратимым окислительно-восстановительные системам относятся:

Система Fe3+ ⇆Fe2+. Эта система занимает особое место среди обра-тимых систем. Она чутко реагирует на малейшие изменения окислительно-восстановительной обстановки. Растворимость соединений трехвалентного железа крайне низкая. Миграция соединений железа возможна главным образом в форме соединений двухвалентного железа в условиях повышенной кислотности и пониженного Eh.

Система Mn2+ ⇆ Mn4+. Данная система является крайне чуткой к измене-нию ОВП. Соединения четырехвалентного марганца нерастворимы в условиях, характерных для почвенных горизонтов. Обменный марганец двухвалентен. Концентрация ионов двухвалентного марганца при повышении кислотности и понижении Eh возрастает в десятки тысяч раз. Миграция соединений марганца в ходе почвообразовательных процессов в вертикальном и горизонтальном направлениях сходна с миграцией соединений железа.

К необратимым окислительно-восстановительным системам относятся:

Система NO3 → NO2 → NО → N. Процесс нитрификации и накопления нитратов происходит в условиях окислительного режима и при высоких Eh 400-500 мв. Увлажнение почвы снижает Eh и способствует развитию процессов денитрификации.

Система сульфаты ⇆ сульфиды. Данная окислительно-восстановительная система играет большую роль во всех почвах, где присутствуют сернокислые соли. При участии микроорганизмов система сульфаты - сульфиды в присутствии органического вещества и недостатке кислорода сдвигается в сторону сульфидов. Происходит процесс восстановления сульфатов до сернистых металлов:

Na2SO4 + 2C = Na2S + CO2

Под действием присутствующей в почве углекислоты сернистые металлы легко разлагаются и образуют бикарбонаты и карбонаты щелочных и щелочно-земельных металлов. При этом происходит процесс восстановления сульфатов:

Na2S + H2CO3 = Na2CO3 + H2S

Однако в почвенном растворе содержание элементов с переменной валентностью достаточно мало. Поэтому почвенный раствор обладает невысокими ОВ-емкостью и буферностью, а величина Eh неустойчива.

Более существенное влияние на ОВ-процессы в почвах оказывает раство-ренный в почвенном растворе кислород, почвенная микрофлора и вода.

Почти все почвенные реакции происходят в водной среде, а сама вода мо-жет выступать и в качестве окислителя, и в качестве восстановителя.

По особенностям протекания окислительно-восстановительных процессов выделяется три ряда почв: 1) автоморфные почвы с преобладанием окислительной среды, 2) почвы с восстановительной глеевой обстановкой, 3) почвы с восстановительной сероводородной обстановкой.

С ОВ-процессами тесно связаны превращения растительных остатков, на-копление и состав образующихся органических веществ, и как следствие, формирование профиля почвы.

Окислительно-восстановительный потенциал (синоним редокс-потенциал; от лат. reductio - восстановление и oxydatio - окисление) - потенциал, возникающий на инертном (обычно платиновом) электроде, погруженном в раствор, содержащий одну или несколько обратимых окислительно-восстановительных систем.

Обратимая окислительно-восстановительная система (редокс-система) представляет собой раствор, содержащий окисленную и восстановленную формы веществ, каждая из которых образуется из другой посредством обратимой окислительно-восстановительной реакции.

В состав простейших редокс-систем входят катионы одного и того же металла различной валентности, например

или анионы одного и того же состава, но разной валентности, например

В таких системах окислительно-восстановительный процесс осуществляется переносом электронов от восстановленной формы к окисленной. К таким редокс-системам относится ряд дыхательных ферментов, содержащих в своем составе гемин, например цитохромы. Окислительно-восстановительный потенциал таких систем может быть вычислен по формуле Петерса:

где е - окислительно-восстановительный потенциал в вольтах, Т - температура по абсолютной шкале, n - число электронов, теряемых одной молекулой или ионом восстановленной формы при переходе ее в окисленную форму; [Ох] и - молярные концентрации (точнее активности) окисленной и восстановленной форм соответственно; е0 - нормальный окислительно-восстановительный потенциал данной системы, равный ее окислительно-восстановительному потенциалу при условии, что =. Нормальные окислительно-восстановительные потенциалы многих редокс-систем можно найти в физико-химических и биохимических справочниках.

Во многих биологических системах окислительно-восстановительные реакции осуществляются посредством переноса от восстановленной формы к окисленной не только электронов, но и равного им числа протонов, например

Величина окислительно-восстановительного потенциала таких систем определяется не только отношением [Ох] : = и рН = 0;остальные величины имеют те же значения, что и в уравнении (1). Окислительно-восстановительный потенциал биологических систем, как правило, определяют при рН=7 и величину е0-1,984·10-4·Т·рН обозначают через e0. В этом случае уравнение (2) принимает вид:

Экспериментально окислительно-восстановительный потенциал определяют потенциометрически (см. Потенциометрия). Окислительно-восстановительный потенциал изолированных клеток и других биологических объектов часто измеряют колориметрически при помощи окислительно-восстановительных индикаторов (см.). Величина окислительно-восстановительного потенциала является мерой окислительной или восстановительной способности данной системы. Редокс-система, имеющая более высокий окислительно-восстановительный потенциал, окисляет систему с более низким окислительно-восстановительным потенциалом. Таким образом, зная величины окислительно-восстановительного потенциала биологических редокс-систем, можно определить направление и последовательность окислительно-восстановительных реакций в них. Знание окислительно-восстановительного потенциала дает возможность вычислять также количество энергии, которое освобождается на определенном этапе окислительных процессов, протекающих в биологических системах. См. также Окисление биологическое.

Различают три основных типа окислительно-восстановительных реакций:

1. Межмолекулярные (межмолекулярного окисления - восстановления).

К этому типу относятся наиболее многочисленные реакции, в которых атомы элемента окислителя и элемента восстановителя находятся в составе разных молекул веществ. Рассмотренные выше реакции относятся к этому типу.

2.Внутримолекулярные (внутримолекулярного окисления - восстановления).

К ним относятся реакции, в которых окислитель и восстановитель в виде атомов разных элементов находятся в составе одной и той же молекулы. По такому типу протекают реакции термического разложения соединений, например:

2KCIO 3 = 2KCI + 3O 2 .

3. Диспропорционирования (самоокисления - самовосстановления).

Это такие реакции, в которых окислителем и восстановителем является один и тот же элемент в одной и той же промежуточной степени окисления, которая в результате протекания реакции одновременно как снижается, так и повышается. Например:

3CI 0 2 + 6 KOH = 5 KCI + KCIO 3 + 3H 2 O,

3HCIO = HCIO 3 + 2HCI.

Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров ОВР, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках котлов тепловых электростанций и в двигателях внутреннего сгорания, являются примером ОВР.

ОВР используются при получении металлов, органических и неорганических соединений, проводят очистку различных веществ, природных и сточных вод.

9.5. Окислительно – восстановительные (электродные) потенциалы

Мерой окислительно – восстановительной способности веществ служат их электродные или окислительно – восстановительные потенциалы j ox / Red (редокс-потенциалы).1 Окислительно – восстановительный потенциал характеризует окислительно – восстановительную систему, состоящую из окисленной формы вещества (Ох), восстановленной формы (Red) и электронов. Принято записывать окислительно-восстановительные системы в виде обратимых реакций восстановления:

Ох + ne - D Red.

Механизм возникновения электродного потенциала . Механизм возникновения электродного или окислительно-восстановительного потенциала поясним на примере металла, погруженного в раствор, содержащий его ионы. Все металлы имеют кристаллическое строение. Кристаллическая решетка металла состоит из положительно заряженных ионов Me n + и свободных валентных электронов (электронный газ). В отсутствие водного раствора выход катионов металла из решетки металла невозможен, т.к. этот процесс требует больших энергетических затрат. При погружении металла в водный раствор соли, содержащей в своем составе катионы металла, полярные молекулы воды, соответственно ориентируясь у поверхности металла (электрода), взаимодействуют с поверхностными катионами металла (рис. 9.1).


В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны:

Ме (к) + m Н 2 Оокисление Ме n+ *m Н 2 О(р)+ nе-

Металл становится заряженным отрицательно, а раствор - положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла (Ме). На границе металл - раствор возникает двойной электрический слой (рис.9.2). Разность потенциалов, возникающая между металлом и раствором, называется электродным потенциалом или окислительно - восстановительным потенциалом электрода φ Ме n + /Ме (φ Ox / Red в общем случае). Металл, погруженный в раствор собственной соли, является электродом (раздел 10.1). Условное обозначение металлического электрода Ме/Ме n + отражает участников электродного процесса.

По мере перехода ионов в раствор растет отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению (ионизации) металла.

Параллельно с процессом окисления протекает обратная реакция - восстановление ионов металла из раствора до атомов (осаждение металла) с потерей гидратной оболочки на поверхности металла:

Ме n+ * m Н 2 О(р) + nе- восстановление Ме(к) + m Н 2 О.

С увеличением разности потенциалов между электродом и раствором скорость прямой реакции падает, а обратной реакции растет. При некотором значении электродного потенциала скорость процесса окисления будет равна скорости процесса восстановления, устанавливается равновесие:

Ме n + * m Н 2 О (р) + nе - D Ме (к) + m Н 2 О.

Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в виде

Ме n + (р) + nе - D Ме (к)

или в общем виде для любых других окислительно-восстановительных систем:

Ох + ne - D Red.

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В рассмотренном случае процесс ионизации в растворе термодинамически возможен, и поверхность металла заряжается отрицательно. Для некоторых металлов (менее активных) термодинамически более вероятным является процесс восстановления гидратированных ионов до металла, тогда их поверхность заряжается положительно, а слой прилегающего электролита - отрицательно.

Устройство водородного электрода. Абсолютные значения электродных потенциалов измерить нельзя, поэтому для характеристики электродных процессов пользуются их относительными значениями. Для этого находят разность потенциалов измеряемого электрода и электрода сравнения, потенциал которого условно принимают равным нулю. В качестве электрода сравнения часто применяется стандартный водородный электрод, относящийся к газовым электродам. В общем случае газовые электроды состоят из металлического проводника, контактирующего одновременно с газом и раствором, содержащим окисленную или восстановленную форму элемента, входящего в состав газа. Металлический проводник служит для подвода и отвода электронов и, кроме того, является катализатором электродной реакции. Металлический проводник не должен посылать в раствор собственные ионы. Удовлетворяют этим условиям платина и платиновые металлы.

Водородный электрод (рис. 9.3) представляет собой платиновую пластинку, покрытую тонким слоем рыхлой пористой пластины (для увеличения поверхности электрода) и опущенную в водный раствор серной кислоты с активностью (концентрацией) ионов Н + , равной единице.

Через раствор серной кислоты пропускают водород под атмосферным давлением. Платина (Pt) – инертный металл, который практически не взаимодействует с растворителем, растворами (не посылает свои ионы в раствор), но он способен адсорбировать молекулы, атомы, ионы других веществ. При контакте платины с молекулярным водородом происходит адсорбция водорода на платине. Адсорбированный водород, взаимодействуя с молекулами воды, переходит в раствор в виде ионов, оставляя в платине электроны. При этом платина заряжается отрицательно, а раствор – положительно. Возникает разность потенциалов между платиной и раствором. Наряду с переходом ионов в раствор идет обратный процесс – восстановление ионов Н + из раствора с образованием молекул водорода. Равновесие на водородном электроде можно представить уравнением

2Н + + 2е - D Н 2 .

Условное обозначение водородного электрода H 2 , Pt│H + . Потенциал водородного электрода в стандартных условиях (Т = 298 К, Р Н2 = 101,3 кПа, [Н + ]=1 моль/л, т.е. рН=0) принят условно равным нулю: j 0 2Н + / Н2 = 0 В.

Стандартные электродные потенциалы. Электродные потенциалы, измеренные по отношению к стандартному водородному электроду при стандартных условиях (Т=298К; для растворённых веществ концентрация (активность) С Red = С ох = 1 моль/л или для металлов С Ме n + = 1 моль/л, а для газообразных веществ Р=101,3 кПа), называют стандартными электродными потенциалами и обозначают j 0 О x / Red . Это справочные величины.

Окислительная способность веществ тем выше, чем больше алгебраическая величина их стандартного электродного (окислительно-восстановительного) потенциала. Напротив, чем меньше величина стандартного электродного потенциала реагирующего вещества, тем сильнее выражены его восстановительные свойства. Например, сравнение стандартных потенциалов систем

F 2 (г.) + 2e - D 2F(p.) j 0 = 2,87 В

H 2 (r.)+ 2e - D 2H (р.) j 0 = -2,25 В

показывает, что у молекул F 2 сильно выражена окислительная тенденция, а у ионов H- восстановительная.

Ряд напряжений металлов. Располагая металлы в ряд по мере возрастания алгебраической величины их стандартных электродных потенциалов, получают так называемый «Ряд стандартных электродных потенциалов» или «Ряд напряжений», или «Ряд активности металлов».

Положение металла в «Ряду стандартных электродных потенциалов» характеризует восстановительную способность атомов металла, а также окислительные свойства ионов металла в водных растворах при стандартных условиях. Чем меньше значение алгебраической величины стандартного электродного потенциала, тем большими восстановительными свойствами обладает данный металл в виде простого вещества, и тем слабее проявляют окислительные свойства его ионы и наоборот.

Например, литий (Li), имеющий самый низкий стандартный потенциал, относится к наиболее сильным восстановителям, а золото (Au), имеющее самое высокое значение стандартного потенциала, является очень слабым восстановителем и окисляется лишь при взаимодействии с очень сильными окислителями. Из данных «Ряда напряжений» видно, что ионы лития (Li +), калия (К +), кальция (Са 2+) и т.д. - самые слабые окислители, а к наиболее сильным окислителям принадлежат ионы ртути (Нg 2+), серебра (Аg +), палладия (Pd 2+), платины (Pt 2+), золота (Аu 3+ , Аu +).

Уравнение Нернста. Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (активностей) окисленной и восстановленной форм вещества, от температуры, природы растворенного вещества и растворителя, рН среды и др. Эта зависимость описывается уравнением Нернста:

,

где j 0 О x / Red – стандартный электродный потенциал процесса; R – универсальная газовая постоянная; T – абсолютная температура; n - число электронов, участвующих в электродном процессе; а ох, а Red – активности (концентрации) окисленной и восстановленной форм вещества в электродной реакции; x и у – стехиометрические коэффициенты в уравнении электродной реакции; F- постоянная Фарадея.

Для случая, когда электроды металлические и устанавливающиеся на них равновесия описываются в общем виде

Ме n + + nе - D Ме,

уравнение Нернста можно упростить, приняв во внимание, что для твердых веществ активность постоянна и равна единице. Для 298 К, после подстановки а Ме =1 моль/л, x=y=1 и значений постоянных величин R=8,314 Дж/ К*моль; F = 96485 Кл / моль, заменяя активность а Ме n + на молярную концентрацию ионов металла в растворе С Ме n + и введя множитель 2,303 (переход к десятичным логарифмам), получим уравнение Нернста в виде

j Ме n + / Ме = j 0 Ме n + / Ме + lg С Ме n + .



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: