Сравнительная характеристика -С3 и -С4 растений. С4-путь фотосинтеза (цикл хетча и слэка) Первичным акцептором со2 у с3 растений служит

Листья таких растений, как сахарный тростник, кукуруза, сорго, амарант способны фиксировать CO2 не только в реакциях цикла Кальвина, но и другим путем, в ходе которого появляются C4-кислоты - щавелевоуксусная, яблочная и аспарагиновая. Такой способ связывания углекислоты получил название C4-пути фотосинтеза (путь Хэча и Слэка).

Для листьев C4-растений характерно анатомическое строение кранц-типа (описано Габерландтом, 1884). Проводящие пучки у таких растений окружены двумя слоями зеленых клеток ассимиляционной паренхимы. Для листьев C4-растений характерны многочисленные воздушные полости, по которым воздух из атмосферы подходит непосредственно к большому числу фотосинтезирующих клеток мезофилла, обеспечивая эффективное поглощение углекислоты. Особенностью строения листа C4-растений является наличие не более 2-3 слоев клеток мезофилла от ближайших клеток обкладки. Клетки обкладки, которые легко обмениваются продуктами фотосинтеза с клетками мезофилла с помощью большого числа плазмодесм, плотно упакованы вокруг проводящих пучков.

Клетки мезофилла Клетки обкладки
Хлоропласты мелкие, их много Хлоропласты крупные, их мало. Содержат много зерен крахмала
Есть граны Не имеют гранальной структуры
Есть фотосистема 1 и 2 Нет фотосистемы 2, т.к. для ФС2 нужны стыки мембран тилакоидов.
Нециклический поток электронов, выделяется О2 Циклический поток электронов, NADPH НЕ образуется, НЕ выделяется О2 пониженное парциальное давление
Есть фотодыхание Нет фотодыхания (т.к. нет О2)
ФЕП-карбоксилаза -
Низкая активность РУБИСКО Высокая активность РУБИСКО
10-15 клеток мезофилла на 1 клетку обкладки
Первичное усвоение СО2 Вторичное усвоение СО2

Т.е. пространственно разграничены процессы первичного и вторичного усвоения СО2.

Фиксация углекислоты в клетках мезофилла происходит в результате присоединения CO2 к фосфоенолпировиноградной кислоте (ФЕП) и образования 4-углеродной щавелевоуксусной кислоты, которая затем превращается в яблочную или аспарагиновую кислоты.

ФЭП-карбоксилаза, в отличие от РУБИСКО (которая связывает только CO2), ассимилирует HCO3 - в условиях очень низкого парциального давления CO2и высокого -O2. Затем C4-кислоты (малат или аспар-тат) транспортируются в клетки обкладки, где происходит их декарбоксилирование и образование C3-кислот. После этого C3-кислоты возвращаются в клетки мезофилла, а углекислота попадает в цикл Кальвина.

В хлоропластах клеток обкладки очень низка активность фотосистемы II и поэтому не происходит фотолиза воды и выделения кислорода. Т.е. в клетках обкладки, где функционирует РУБИСКО, поддерживается высокая концентрация CO2 и низкая -O2. В этих хлоропластах энергия света идет только на синтез АТФ в результате работы фотосистемы I и циклического транспорта электронов. НАДФН, необходимый для синтеза углеводов в цикле Кальвина в хлоропластах обкладки, образуется при окислении маликэнзимом яблочной кислоты, поступающей из клеток мезофилла.

Различают три варианта C4-пути фотосинтеза, которые отличаются по типу С4-кислоты, которая транспортируется в клетки обкладки (аспартат или малат), по типу C3-кислоты (пируват или аланин), которая возвращается в клетки мезофилла для регенерации, и, наконец, по типу декарбоксилирования в клетках обкладки.

Поскольку в цикле Кальвина первичными продуктами включения неорганического углерода в органический являются трехуглеродные соединœения, данный процесс носит название С-3 путь фотосинтеза.

Важно заметить, что для синтеза одной молекулы глюкозы должно произойти шесть оборотов цикла Кальвина. В каждом обороте используются три молекулы АТФ (две для активирования двух молекул фосфоглицериновой кислоты и одна при регенерации рибулезодифосфата) и две молекулы НАДФ. Н 2 для восстановления кислоты в альдегид. Таким образом для синтеза одной молекулы глюкозы крайне важно потратить 12 молекул НАДФ. Н 2 и 18 молекул АТФ.

Важно отметить, что физиологическое значение цикла Кальвина состоит не только в акцепции углекислого газа, но и в создании массы углеводных соединœений, которые идут как на синтез запасных веществ, так и на создание компонентов хлоропласта и текущий метаболизм клетки. .

Большинство растений усваивает неорганический углерод именно по пути цикла Кальвина. При этом довольно большая группа растений (около 500 видов) тропического происхождения выработала в процессе эволюции некоторую модификацию процесса, усваивая неорганический углерод путем образования в результате его акцепции четырехуглеродных соединœений. Это растения, приспособившиеся к фотосинтезу в условиях повышенной температуры воздуха и избыточной освещенности, а также пониженной влажности почвы (засухи). Из культурных растений обладают таким метаболитическим процессом кукуруза, просо, сорго, сахарный тростник. У ряда сорных растений также наблюдается именно эта особенность метаболизма (свинорой, просо куриное, щирица) и т.д.

Особенностью анатомического строения таких растений является наличие фотосинтезирующих клеток двух типов, которые располагаются в виде концентрических кругов - радиально расположенные вокруг проводящих пучков клетки обкладочной паренхимы и мезофилла. Этот тип анатомического строения принято называть кранц-типом (от немецкого Кranz -венок).

Этот тип метаболизма был изучен в 60-е годы прошлого века, большую роль сыграли при этом исследования советских ученых Карпилова, Незговоровой, Тарчевского, а также австралийских ученых Хэтча и Слэка. Именно они предложили законченную схему цикла, в связи с этим принято данный процесс называть также циклом Хэтча-Слэка-Карпилова.

Процесс происходит в два этапа: поступающий в мезофилл СО 2 вступает в соединœение с трехуглеродным соединœением (ФЕП) - фосфоенолпировиноградной кислотой - которая превращается в четырехуглеродное соединœение. Это и есть ключевой момент процесса, из-за которого он и получил свое название, так как неорганический углерод, акцептируясь трехуглеродным соединœением, превращается в четырехуглеродное соединœение. Учитывая зависимость оттого в какое именно четырехуглеродное соединœение превращается неорганический углерод различают три группы растений:

НАДФ-МДГ образуют яблочную кислоту при участии фермента малатдегидрогеназы, а затем пировиноградной кислоты,

НАД-МДГ образуют аспарагиновую кислоту и аланин,

ФЕП-КК образуют аспарагиновую кислоту и фосфоенолпировиноградную кислоту.

Наиболее значимые для сельского хозяйства растения относятся к НАДФ-МДГ типу.

После образования четырехуглеродного соединœения происходит его перемещение во внутренние клетки обкладочной паренхимы и расщепление или декарбоксилирование этой молекулы. Отделившаяся карбоксильная группа в виде CОО - входит в цикл Кальвина, а оставшаяся трехуглеродная молекула - ФЕП - возвращается опять в клетки мезофилла.

Такой путь фиксации углекислого газа позволяет растениям накапливать в виде органических кислот запас углерода, проводить процесс фотосинтеза в наиболее жаркое время дня при сокращении потерь воды на транспирацию за счёт закрытия устьиц. Эффективность использования воды такими растениями в два раза больше, чем у растений, происходящих из умеренных широт.

Для С 4 -растений характерны отсутствие обратного потока углекислого газа при фотодыхании и повышенный уровень синтеза и накопления органических веществ.

5. Фазы и процессы фотосинтеза (продолжение)

Рассмотренные нами в предыдущих частях два этапа фотосинтеза – физический и фотохимический – объединяют в так называемую световую фазу фотосинтеза. Теперь же речь пойдет о второй фазе фотосинтеза, часто называемой темновой фазой.

Темновая фаза – не совсем удачное название. Если мы говорим, что световая фаза названа так, чтобы подчеркнуть зависимость всех протекающих в ней реакций от света, то название «темновая фаза» означает, что все реакции, в ней протекающие, от света не зависят и проходят в темноте.

Но это не совсем точно. Очень многие реакции темновой фазы фотосинтеза зависят от света, так как ферменты, катализирующие эти реакции, индуцируются светом. Поэтому эту фазу фотосинтеза лучше называть путем превращения углерода, или циклом фиксации углерода, – по основному процессу, который в ней происходит.

(Здесь нужно обязательно пояснить, что происходит фиксация не чистого углерода, а углерода в составе углекислого газа СО 2 .)

Отметим, что разделение процесса фотосинтеза на две фазы происходит не только по отношению к свету, но и по месту протекания реакций. Реакции световой фазы протекают в тилакоидах гран и стромы, а реакции фиксации углерода протекают в матриксе (строме) хлоропластов.

Стоит обратить внимание учащихся на то, что в литературе встречается и другое название тилакоидов – ламеллы гран. Взаимосвязь терминов можно объяснить, зачитав отрывок из «Физиологии растений» Н.И. Якушкина: «Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой – и пронизано мембранами (ламеллами). Ламеллы, соединенные друг с другом, образуют как бы пузырьки – тилакоиды. В хлоропластах тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их ламеллы – ламеллами гран. Между гранами параллельно друг другу располагаются длинные тилакоиды. Составляющие их ламеллы получили название ламеллы стром».

Рассматривая Z-схему, мы установили, что конечные продукты циклического и нециклического фосфорилирования – АТФ и НАДФ . Н – используются в темновых реакциях фотосинтеза. Как же они используются?

Если в световой фазе АТФ и НАДФ . Н являются конечными продуктами, то в процессе фиксации углерода они используются на самом первом этапе всего цикла фиксации углерода. Весь цикл фиксации углерода можно представить в виде следующих стадий.

    Первая стадия – непосредственная фиксация углекислого газа – карбоксилирование.

    Вторая стадия – образование 3-фосфоглицеринового альдегида (ФГА).

    Третья стадия – образование продуктов фотосинтеза.

    Четвертая стадия – восстановление первоначальных реагентов.

Перечисленные стадии выделены условно – вместе они составляют цикл фиксации углерода, или цикл Кальвина.

В отличие от световых реакций, которые протекали в строгой последовательности, реакции фиксации углерода могут протекать параллельно, за исключением первых двух – фиксации углекислого газа и образования ФГА. Рассмотрим каждую стадию цикла.

Карбоксилирование

Эта стадия – ключевая, потому что в ней участвует СО 2 . Молекула углекислого газа соединяется с молекулой пятиуглеродного сахара рибулезодифосфата (РДФ) с образованием нестойкого шестиуглеродного соединения, которое затем распадается на две молекулы 3-фосфоглицериновой кислоты (1).

Реакция карбоксилирования очень интересна тем, что в зависимости от условий она может протекать с образованием различных конечных продуктов. Так, например, при наличии СО 2 продуктом реакции будет только ФГК, а в присутствии О 2 РДФ не присоединяет углекислый газ и распадается на ФГК и фосфогликолевую кислоту, которая используется в процессах фотодыхания. Фотодыхание – это процесс, протекающий лишь на свету и сопровождающийся поглощением О 2 и выделением СО 2 . Такое изменение хода реакции объясняется тем, что участвующий в ней фермент обладает двойной каталитической активностью – по отношению к углегислому газу и кислороду.

Этот фермент называется рибулозо-1,5-бифосфаткарбоксилаза-оксигеназа (РуБФ-карбоксилаза). Этот фермент составляет около 50% всех растворимых белков в листьях и потому может считаться самым распространенным белком в природе. Фермент состоит из двух субъединиц – большой и малой. Интересно, что белки больших субъединиц кодируются ДНК хлоропластов, а белки малых субъединиц – ядерной ДНК. Большие субъединцы обладают каталитической активностью и в отсутствие малых, которые, по-видимому, играют регуляторную роль. Этот факт может служить подтверждением того, что хлоропласты произошли от прокариотических предков.

Таким образом, на первых этапах фиксации углерода имеет место конкуренция между двумя процессами – фиксацией углерода и фотодыханием. Для сдвига баланса в сторону фиксации углерода необходимы ионы Мg 2 + (2).

Образование фосфоглицеринового альдегида

Образующаяся на первой стадии ФГК превращается в ФГА в два этапа (3 и 4). Сначала используется АТФ, синтезированная в световой фазе фотосинтеза. Затем используется НАДФ . Н, который тоже является продуктом световой фазы фотосинтеза.

Молекула ФГА является ключевым веществом для третьей стадии.

Образование продуктов фотосинтеза

Обычно продуктом фотосинтеза называют сахар. На самом деле продуктами фотосинтеза можно считать и другие вещества, о чем мы упоминали при рассмотрениии Z-схемы.

Молекула ФГА используется растением в цикле Кальвина в нескольких направлениях.

    Во-первых, ФГА является основой для синтеза сахара.

    Во-вторых, ФГА может быть использована для синтеза аминокислот.
    Среди продуктов фотосинтеза обнаружены такие аминокислоты, как аланин, серин, глютаминовая кислота, глицин. Синтез аминокислот происходит интенсивно при недостатке НАДФ . Н, в результате чего из ФГК образуется не ФГА, а пировиноградная кислота, которая является исходным соединением для синтеза аминокислот и одним из ключевых веществ цикла Кребса.

    В-третьих, ФГА дает начало циклу превращений некоторых промежуточных продуктов в РДФ, который служит акцептором углекислого газа.

Наряду с углеводами и аминокислотами из промежуточных продуктов цикла Кальвина могут образовываться липиды и другие продукты.

Во всех уравнениях фотосинтеза в правой части пишется формула шестиуглеродного сахара. Как правило, его называют глюкозой. Но в действительности первым свободным сахаром является дисахарид сахароза, из которой образуются два моносахарида – глюкоза и фруктоза.

Восстановление первоначальных реагентов

Для того чтобы растение могло акцептировать новую молекулу углекислого газа, необходимо иметь РДФ, основной акцептор углекислого газа. РДФ образуется из ФГА в результате цепи реакций, в процессе которых образуются пяти- и семиуглеродные сахара. Надо отметить, что основная масса ФГА идет именно на восстановление нужного количества РДФ: из 12 образовавшихся молекул ФГА только две идут на образование продуктов фотосинтеза, т.е. сахарозы.

Подводя итог рассмотрению фаз фотосинтеза, можно составить обобщенную схему фотосинтеза (рис. 1).

Учитывая реакции световой и темновой фаз фотосинтеза, можно привести следующее суммарное уравнение фотосинтеза.

Световые реакции:

Темновые реакции:

6. Виды фотосинтеза

В настоящее время известны три разных механизма темновых реакций фотосинтеза у высших растений. Но, по-видимому, правильнее говорить об одном основном процессе и двух вариантах.

Основной механизм – это фиксация углерода в цикле Кальвина. В последнее время этот цикл стали называть С 3 -путем, или С 3 -типом, фотосинтеза, а растения, осуществляющие только реакции этого цикла, называют С 3 -растениями. Такие растения обычно растут в областях умеренного климата; оптимальная дневная температура для фиксации углекислого газа у этих растений составляет от +15 до +25 °С.

Первый вариант – это С 4 -путь (или С 4 -тип фотосинтеза), называемый также циклом Хетча–Слэка. Растения, осуществляющие данный тип фотосинтеза, распространены в тропических и субтропических областях.

Второй вариант – процесс, известный под названием метаболизма органических кислот по типу толстянковых (МОКТ- или САМ-фотосинтез). Растения с таким типом фотосинтеза часто встречаются в засушливых пустынных областях.

С 3 -растения превращают СО 2 в углеводы только в реакциях цикла Кальвина. С 4 -растения и МОКТ-растения также осуществляют цикл Кальвина, но в них поглощение СО 2 и превращение его в углеводы включает в себя и другие реакции. С 4 -растения и МОКТ отличаются друг от друга природой этих дополнительных реакций, временем суток, когда они происходят, и тем, в каких клетках находятся вещества, участвующие в этих реакциях.

У С 3 -растений фотосинтез происходит только в клетках мезофилла листа, а у С 4 -растений – в клетках мезофилла и в клетках обкладки сосудистых пучков.

С4-тип фотосинтеза

В самых общих чертах путь углерода в реакциях С 4 -типа фотосинтеза показан на рис. 2.

Рис. 2. Схематическое изображение пути углерода при С 4 -фотосинтезе. С 3 -соединения содержат три атома углерода в молекуле, С 4 -соединения – четыре

Цикл Кальвина у данного типа растений осуществляется в клетках обкладки сосудистого пучка и протекает так же, как у С 3 -растений.

Фиксация углекислого газа у С 3 - и С 4 -растений значительно различается. Если у С 3 -растений молекула углекислого газа присоединялась к пятиуглеродной молекуле РДФ, то у С 4 -растений акцептором углекислого газа является трехуглеродная молекула, чаще всего – это фосфоенолпировиноградная кислота (ФЕП). Соединяясь с углекислым газом ФЕП превращается в щавелевоуксусную кислоту (ЩУК), которая и поступает в хлоропласт клеток мезофилла. В хлоропластах ЩУК при наличии НАДФ. Н превращается в яблочную кислоту (ЯК), которая поступает в клетки обкладки сосудистых пучков. В клетках обкладки сосудистых пучков ЯК отдает молекулу углекислого газа в цикл Кальвина, превращаясь в пировиноградную кислоту (ПВК). ПВК, в свою очередь, возвращается в хлоропласты мезофилла, превращается в ФЕП, и начинается новый цикл (рис. 3).

Рис. 3. Фотосинтез С4-типа (на примере кукурузы)

Увеличение числа реакций для фиксации углекислого газа у С 4 -растений на первый взгляд может показаться излишним и бессмысленным. Но это только на первый взгляд. Растениям с С 4 -типом фотосинтеза приходится концентрировать углекислый газ в клетках обкладки, т.к. по сравнению с С 3 -растениями в их клетках углекислого газа содержится значительно меньше. Это связано с тем, что С 4 -растения обитают в более жарком и сухом климате, чем С 3 -растения, поэтому для уменьшения потерь воды им приходится уменьшать транспирацию. За счет этого создаются трудности в поглощении углекислого газа, что и приводит к необходимости его концентрации. В настоящее время считается, что С 4 -тип фотосинтеза является эволюционным приспособлением к более жарким и сухим климатическим условиям.

Метаболизм органических кислот по типу толстянковых (МОКТ)

Растения с данным типом фотосинтеза являются в основном суккулентами.

Для МОКТ-растений характерны следующие особенности.

1. Их устьица обычно открыты ночью (т.е. в темноте) и закрыты в течение дня.

2. Фиксация углекислого газа происходит в темное время суток. При этом образуется значительное количество яблочной кислоты.

3. Яблочная кислота запасается в больших вакуолях, которые характерны для клеток МОКТ-растений.

4. В светлое время суток яблочная кислота отдает углекислый газ в цикл Кальвина, где она превращается в сахарозу или запасной углевод глюкан.

5. В темновой период суток часть запасенного глюкана распадается с образованием молекул-акцепторов для темновой фиксации углекислого газа (рис. 4).

Таким образом у МОКТ-растений существует суточный ритм: ночью содержание запасного глюкана падает и содержание яблочной кислоты повышается, а днем происходят противоположные изменения.

В заключение надо добавить, что фотосинтез по МОКТ-типу считается самым поздним приспособлением растений в процессе эволюции.

Альтернативные пути фотосинтеза.

С 3- путь оказался не единственным в превращении Со 2 а превращении в темновой фазе. Изменение внешних условий климата и состава ат мосферы в разных участках Земли, вызвали появление континентов с жарким и засушливым климатом (пустыни), что не могло не сказаться на растительном мире. Видовая специфичность несомненно является отражением факта своеобразия физиологического типа каждого вида растения. C 50 годов обратили внимание на процессы фотосинтеза, дыхания, транспирации, транспорта веществ. Оказалось, что условия среды определяют структурно-биохимические типы фотосинтеза растений.

Вначале 60 годов 20 века было установлено, что у некоторых растений произрастающих в тропиках или вышедших оттуда, как кукуруза, сахарный тростник, сорго, просо, представители семейства маревых растений полупустыни и пустыни, всего у 18 семейств. Такие растения встречаются как различных семействах, так и родах, но нет ни одного семейства, рода, состоящих только из С 4- растений. Первые продукты ассимиляции СО 2 здесь имеют 4 атома углерода, поэтому такие растения называют "С4-растениями". У этих растений стабильным первичным продуктом ассимилируемой СО 2, является не ФГК, а яблочная, а у ряда растений аспарагиновая кислота, содержащих не 3 , а 4 углеродных атома., в которых была обнаружена радиоактивная метка 14 СО 2 (Ю.С. Карпилов, 1960,1969; М.Д. Хэтч и С.Р. Слэк, 1966). Так был открыт по существу новый путь ассимиляции СО 2, которой получил название «С 4 – пути» фотосинтеза.

У таких растений специфичное анатомическое строение листа. У них два типа фотосинтезирующих клеток: клетки обкладки, радиально покрывающие проводящие пучки в листе, и клетки мезофилла столбчатой и губчатой ткани. Это может служить диагностическим признаком на определение С 4 -растений. В структуре этих клеток также есть различия: в клетках обкладках в хлоропластах отсутствуют граны, они агранальные, а в клетках мезофилла все хлоропласты гранальные. Эти два типа клеток и физиологически не равноценны и специализируются на выполнении различных звеньев в превращении поглощенного СО 2

Клетки обкладки выполняют основную функцию, в них происходит цикл Кальвина, в том виде как он происходит у растений с С 3 –путем фотосинтеза, т.е. весь процесс превращения углекислого газа всех этапов цикла Кальвина. Клетки мезофилла листа осуществляют вспомогательную роль, подкачку СО 2 для цикла Кальвина. Таким образом у растений с С 4 –путем. имеется две стадии, происходящих в разных клетках листа. На один агранальный хлоропласт клетки обкладки приходится 10 гранальных клеток мезофилла, в которых происходит нециклический путь фотофосфорилирования. Это обеспечивает повышение фотосинтеза даже в условиях очень высокой температуры и почти закрытых устьицах, что имеет положительное значение и для водного режима растений, т.к снижается расход воды. Оба процесса пространственно разобщены, т.е усвоение СО 2 идет в клетках мезофилла, а образование сахаров и регенерация акцептора в клетках обкладках. Но эти два процесса идут одновременно, на свету.

Первая реакция цикл С 4 - пути фотосинтеза протекает в мезофилле листа, в котором акцептором углекислого газа является фосфоэнол-пировиноградная кислота (ФЭП). В этих клетках очень активна ФЭП-карбоксилаза, интенсивно связывающая СО 2 в органическое соединение (рис.)

Фотосинтетический цикл С 4 –пути фотосинтеза

ФЕП - фосфоенолпировиноградная кислота;

ЩУК - щавелевоуксусная кислота;

ЯК - яблочная кислота;

ПВК - пировиноградная кислота;

РБФ - рибулозо-1,5-бифосфат;

3-ФГК - фосфоглицериновая кислота;

ФГА - фосфоглицериновый альдегид

Реакции идут следующим путем. В клетках мезофилла листа происходит карбоксилирование ФЭП ферментов ФЭП-карбоксилаза с образованием ЩУК щавелево-уксусной кислоты: ФЭП + СО 2 + Н 2 О → ЩУК Это нестабильное вещество стабилизируется здесь же за счет НАДФН с образованием яблочной кислоты (малат), 4-х углеродного соединения: ЩУК + НАДФН → ЯК. У ряда растений вместо ЯК, образуется аспарагиновая кислота (АК) для чего в клетках необходим аммиак: ЩУК + NH 4 + НАДФН → АК. Эти две кислоты в одном и том же растении образовываться не могут, поэтому такие растения называю малатными или аспартатными.. Второй этап заключается в том, что малат переходит в клетки обкладки сосудистого пучка, где в результате его окислительного декарбоксилирования образуются СО 2 и НАДФН для цикла Кальвина. Получаемый при этом пируват (ПВК) возвращается в клетки мезофилла фосфорилируется, в фосфоенолпируват, первичный акцептор СО 2, и С4-путь замыкается. Освободивщаяся СО 2 идет на второе карбоксилирование уже РДФ цикла Кальвина с образованием углеводов.в клетах обкладках. Двойное карбоксилирование обеспечивает усвоение CO 2 более интенсивно, чем при С 3 – пути, поэтому его называют кооперативным. Двоное карбоксиливание намного эффективнее и обеспечивает интенсивный фотосинтез при пониженном содержании СО 2 . Так если у С 3 растений фотосинтез снижается ниже 0,03%, то у С 4 – идет полноценно при 0,008%. Появление альтернативного пути С 4 растений считают как процесс эволюции приспособления с пониженному содержания в атмосфере СО 2 и увеличения О 2 , за с чет самих же растений, чем в период их возникновения. Поэтому у этих растений большие преимущества перед С 3 – путем.

Существует большая группа растений (500 видов покрытосеменных), у которых первичными продуктами фиксации СО 2 и восстановления являются четырех­углеродные соединения. Их называют С 4 -растениями . Основы для биохимического исследования фотосинтеза у _С 4 -растений были заложены в работах Л. А. Незговоровой (1956-1957), К. С. Карпилова и И. А. Тарчевского (1960-1963). В 1966 г. Хетч и Слэк (ав­страл.) предложили законченную схему цикла темповых реакций у С 4 -растений, которая получила название цикла Хетча и Слэка .

К С 4 -растениям относится ряд культурных растений преимуественно тропического и субтропического происхождения: ­кукуруза, просо, сорго, сахарный тростник и многие злостные сорняки - свинорой, сыть округлая, ежовник крестьянский, просо куриное, просо крупное, гумай (сорго алепское), щирица, щетинник и др . Как правило, это высокопродуктивные растения, устойчиво осуществляющие фотосинтез при значительных по­вышениях температуры и в засушливых условиях .

Для листьев С 4 -растений характерно анатомическое строение кранц-типа (от нем. Kranz - венок, корона ), т. е. наличие явно отличающихся друг от друга фотосинтезирующих клеток двух типов, которые располагаются концентрическими кругами: ради­ально расположенные вокруг проводящих пучков клетки обкладки и основной мезофилл (рис. 40).

Клетки обкладки проводящего пучка содержат крупные, ли­шенные гран (агранальные ) хлоропласты . В клетках мезофилла находятся более мелкие гранальные хлоропласты . Эти два типа клеток физиологически не равноценны и специализируются на выполнении разных звеньев фотосинтеза.

C 4 -цикл можно разде­лить на две стадии : карбоксилирование (в клетках мезофилла ) и декарбоксилирование и синтез углеводов (в клетках обкладки проводящих пучков ). Общим для всех С 4 -расте­ний является то, что карбоксилированию подвергается фосфоенолпировиноградная кислота (ФЕП ) при участии ФЕП-карбок­силазы и образуется щавелевоуксусная кислота (ЩУК ), которая восстанавливается до яблочной кислоты или аминируется с об­разованием аспарагиновой кислоты .

ЩУК, яблочкая и аспарагиновая кислоты являются C 4 соединениями .

По способу декарбоксилирования при участии НАДФ-Н или НАД-малатдегидрогеназы (МДГ), называемой также малик-энзимом и яблочным фермен­том) или ФЭП-карбоксики­назы (ФЕП-КК) у С 4 -растений можно выделить три группы : НАДФ-МДГ, НАД-МДГ и ФЕП-КК-типы соответственно.

У НАДФ-МДГ-растений глав­ными метаболитами, вовлечен­ными в обмен между клетками, являются малат и пируват (ПВК) , у НАД-МДГ-растений - аспартат и аланин и у ФЕП-КК-растений - аспартат и ФЕП .

Важ­нейшие с-х культуры (кукуруза, сорго, са­харный тростник) и такие сорняки, как сыть, ежовник, щетинник, гумай относятся к НАДФ-МДГ-типу.

Рассмотрим С 4 -цикл восстановления СО 2 на примере этих растений (рис .).

СО 2 , поступающий в лист через устьица, попадает в цитоплазму клеток мезофилла , где при участии ФЕП­-карбоксилазы вступает в реакцию с ФЕП , образуя ЩУК (оксалоацетат).

Затем в хлоропластах ЩУК восстанавливается до яблочной кислоты (малата) за счет НАДФ Н , образующегося в ходе световой фазы фотосинтеза; ЩУК в присутствии NH 4 может превращаться также в аспартат .

Опыты с радиоактивной меткой ( 14 С) показали, что после осве­щения растений в течение 1 с более 90 % радиоактивности обна­руживается в составе С 4 -кислот.

Затем малат переносится в хлоропласты клеток обкладки со­судистого пучка, где он подвергается окислительному декарбо­ксилированию , продуктом которого является ПВК . Последняя снова диффундирует в мезофилл , где при участии АТФ, образованной в световой фазе, происходит регенерация ФЕП , после чего цикл карбоксилирования повторя­ется с участием новой молекулы СО 2 . Образовавшиеся в резуль­тате окислительного декарбоксилирования малата СО 2 и НАДФ-Н поступают в цикл Кальвина , что приводит к образова­нию ФГК и других продуктов , свойственных С 3 -растениям. Сле­довательно, именно клетки обкладки выполняют роль основной ассимилирующей ткани, поставляющей сахара в проводящую систему. Клетки мезофилла выполняют вспомогательную функ­цию - подкачку СО 2 для цикла Кальвина.

Таким образом, С 4 ­-путь обеспечивает более полное усвоение СО 2 , что особенно важно для тропических растений, где основным лимитирующим фактором фотосинтеза является концентрация СО 2 . Эффектив­ность усвоения СО 2 С 4 -растениями увеличивается также за счет подачи НАДФ-Н в хлоропласты клеток обкладки . Эти хлороплас­ты имеют агранальное строение и специализируются на темпо­вой фазе фотосинтеза, здесь практически не происходит НЦФФ. На один агранальный хлоро­пласт в среднем приходится 8-10 гранальных хлоропластов, осуществляющих первичную фиксацию СО 2 и НЦФФ. Такая компартментация процессов и кооперация функционирования тканей обеспечивают повышение продуктивности растений и позволяют накапливать СО 2 в орга­нических кислотах для осуществления фотосинтеза даже при закрытых устьицах в наиболее жаркое время дня . Это сокращает потери воды на транспирацию . Эффективность использования воды С 4 -растениями вдвое выше , чем у С 3 -растений.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: